IR INY S T A
LAF o F foidai

CHAPTER

In the previous chapter, we discussed network construction and the low-level
protocols needed for messages to be transferred between systems. Now we
examine one use of this infrastructure. A distributed file system (DFS) is
a distributed implementation of the classical time-sharing model of a file
system, where multiple users share files and storage resources (Chapter 11).
The purpose of a DFS is to support the same kind of sharing when the files are
physically dispersed among the sites of a distributed system,

In this chapter, we describe how a DFS can be designed and implemented.
First, we discuss common concepts on which DFSs are based. Then, we illustrate
our concepts by examining one influential DFS—the Andrew file system (AFS).

161 sk olu)

As we noted in the preceding chapter, a distributed system is a collection
of loosely coupled computers interconnected by a communication network.
These computers can share physically dispersed fiies by using a distributed
file system (DFS}). In this chapter, we use the term DFS to mean distributed
file systems in general, not the commercjal Transarc DFS product. The latter is
referenced as Transarc DFS. Also, NFS refers to NFS version 3, unless otherwise
noted.

To explain the structure of a DFS, we need to define the terms service, server,
and client. A service is a software entity running on one or more machines
and providing a particular type of function to clients. A server is the service
software running on a single machine. A client is a process that can invoke
a service using a set of operations that form its client interface. Sometimes a
lower-level interface is defined for the actua® cross-machine interaction; it is
the intermachine interface.

Using this terminology, we say that a file system provides file services to
clients. A client interface for a file service is formed by a set of primitive file
operations, such as create a file, delete a file, read from a file, and write to a file.
The primary hardware component that a file server controls is a set of local
secondary-storage devices {usually, magnetic disks) on which files are stored
and from which they are retrieved according to the clients” requests.

543

544

15.2

Chapter 15

A DFS is a file system whose clients, servers, and storage devices are
dispersed among the machines of a distributed system. Accordingly, service
activity has to be carried out across the network. Instead of a single centralized
data repository, the system frequently has multiple and independent storage
devices. As you will see in this text, the concrete configuration and imple-
mentation of a DFS may vary from system to system. In some configurations,
servers run on dedicated machines; in others, a machine can be both a server
and a client. A DFS can be implemented as part of a distributed operating
system or, alternatively, by a software layer whose task is to manage the
communication between conventional operating systems and file systems. The
distinctive features of a DFS are the multiplicity and autonomy of clients and
servers in the system.

Ideally, a DFS should appear to its clients to be a conventional, centralized
file system. The multiplicity and dispersion of its servers and storage devices
should be made invisible. That is, the client interface of a DFS should not
distinguish between local and remote files. It is up to the DFS to locate the
files and to arrange for the transport of the data. A transparent DFS facilitates
user mobility by bringing the user’s environment (that is, home directory) to
wherever a user logs in. -

The most important performance measurement of a DFS is the amount
of time needed to satisfy service requests. In conventional systems, this time
consists of disk-access time and a small amount of CPU-processing time. In a
DFS, however, a remote access has the additional overhead attributed to the
distributed structure. This overhead includes the time to deliver the request
to a server, as well as the time to get the response across the network back
to the client. For each direction, in addition to the transfer of the information,
there is the CPU overhead of running the communication protecol software.
The performance of a DFS can be viewed as another dimension of the DFS’s
transparency. That is, the performance of an ideal DFSs would be comparable to
that of a conventional file system.

The fact that a DFS manages a set of dispersed storage devices is the DF5's
key distinguishing feature. The overall storage space managed by a DFS is
composed of different and remotely located smaller storage spaces. Usually,
these constituent storage spaces correspond to sets of files. A component unit
is the smallest set of files that can be stored on a single machine, independently
from other units. All files belonging to the same component unit must reside
in the same location.

Naming is a mapping between logical and physical objects. For instance,
users deal with logical data objects represented by file names, whereas the
system manipulates physical blocks of data stored on disk tracks. Usually, a
user refers to a file by a textual name. The latter is mapped to a lower-level
numerical identifier that in turn is mapped to disk blocks. This multilevel
mapping provides users with an abstraction of a file that hides the details of
how and where on the disk the file is stored.

In a transparent DFS, a new dimension is added to the abstraction: that of
hiding where in the network the file is located. In a conventional file system, the

15.2 - ey 545

range of the naming mapping is an address within a disk. In a DFS, this range
is expanded to include the specific machine on whose disk the file is stored.
Goihg one step further with the concept of treating files as abstractions leads
to the possibility of file replication. Given a file name, the mapping returns a -
set of the locations of this file’s replicas. In this abstraction, both the existence
of miultiple copies and their locations are hidden.

15.2.1 Naming Structures

We need to differentiate two related notions regarding name mappings in a
DFs.

Location transparency. The name of a file does not reveal any hint of the
file’s physical storage location.

Location independence. The name of a file does not need to be changed
when the file’s physical storage location changes.

Both definitions are relative to the level of naming discussed previously,
since files have different names at different levels (that is, user-level textual
names and system-level numerical identifiers). A location-independent nam-
ing scheme is a dynamic mapping, since it can map the same file name to
different locations at two different times. Therefore, location independence is
a stronger property than is location transparency.

In practice, most of the current DFSs provide a static, location-transparent
mapping for user-level names. These systems, however, do not support file
migration; that is, changing the location of a file automatically is impossible.
Hence, the notion of location independence is irrelevant for these systems.
Files are associated permanently with a specific set of disk blocks. Files and
disks can be moved between machines manually, but file migration implies an
automatic, operating-system-initiated action. Only A¥S and a few experimental
file systems support location independence and file mobility. AFS supports file
mobility mainly for administrative purposes. A protocol provides migration
of AFS component units to satisfy high-level user requests, without changing
either the user-level names or the low-level names of the corresponding files.

A few aspects can further differentiate location independence and static
location transparency:

= Divorce of data from location, as exhibited by location independence,
provides a better abstraction for files. A file name should denote the file’s
most significant attributes, which are its contents rather than its location.
Location-independent files can be viewed as logical data containers that
are not attached to a specific storage location. If only static location
transparency is supported, the file name still denotes a specific, althdugh
hidden, set of physical disk blocks.

= Static location transparency provides users with a convenient way to share
data. Users can share remote files by simply naming the files in a location-
transparent manner, as though the files were local. Nevertheless, sharing
the storage space is cumbersome, because logical names are still statically
attached to physical storage devices. Location independence promotes

546

Chapter 15

sharing the storage space itself, as well as the data objects. When files can
be mobilized, the overall, system-wide storage space looks like a single
virtual resource. A possible benefit of such a view is the ability to balance
the utilization of disks across the system.

Location independence separates the naming hierarchy from the storage-
devices hierarchy and from the intercomputer structure. By contrast, if
static location transparency is used (although names are transparent),
we can easily expose the correspondence between component units and
machines. The machines are configured in a pattern similar to the naming
structure. This configuration may resirict the architecture of the system
unnecessarily and conflict with other considerations. A server in charge of *
a root directory is an example of a structure that is dictated by the naming
hierarchy and contradicts decentralization guidelines.

Once the separation of name and location has been completed, clients
can access files residing on remote server systems. In fact, these clients may
be diskless and rely on servers to provide all files, including the operating-
system kernel. Special protocols are needed for the boot sequence, however.
Consider the problem of getting the kernel to a diskless workstation. The
diskless workstation has no kernel, so it cannot use the DFS code to retrieve
the kernel. Instead, a special boot protocol, stored in read-only memory (ROM)
on the client, is invoked. It enables networking and retrieves anly one special
file {the kernel or boot code) from a fixed location. Once the kernel is copied
over the network and loaded, its DFS makes all the other operating-system files
available. The advantages of diskless clients are many, including lower cost
(because the client machines require no disks) and greater convenience {when
an operating-system upgrade occurs, only the server needs to be modified).
The disadvantages are the added complexity of the boot protocols and the
performance loss resulting from the use of a network rather than a local disk.

The current trend is for clients to use both local disks and remaote file servers.
Operating systems and networking software are stored locally; file systems
containing user data—and possibly applications—are stored on remote file
systems. Some client systems may store commeonly used applications, such as
word processors and web browsers, on the local file system as well, Other, less
commonly used applications may be pushed from the remote file server to the
client on demand. The main reason for providing clients with local file systems
rather than pure diskless systems is that disk drives are rapidly increasing in
capacity and decreasing in cost, with new generations appearing every year
or so. The same cannot be said for networks, which evolve every few years.
Overall, systems are growing more quickly than are networks, so extra work
is needed to limit network access to improve system throughput.

15.2.2 Naming Schemes

There are three main approaches to naming schemes in a DFS. In the simplest
approach, a file is identified by some combination of its host name and local
name, which guarantees a unigue system-wide name. In Ibis, for instance,
a file is identified uniquely by the name host:local-name, where local-name is a
UNIx-like path. This naming scheme is neither location transparent nor location
independent. Nevertheless, the same file operations can be used for both local

15.2 Coe 547

and remote files. The DFS is structured as a collection of isolated component
units, each of which is an entire conventional file system. In this first approach,
component units remain isolated, although means are provided to refer to a
remote file. We do not consider this scheme any further in this text.

The second approach was popularized by Sun’s network file system (NFs).
NFS is the file-system component of ONC+, a networking package supported
by many UNIX vendors. NFS provides a means to attach remote directories
to local directories, thus giving the appearance of a coherent directory tree.
Early NFS versions allowed only previously mounted remote directories to
be accessed transparently. With the advent of the automount feature, mounts
‘are done on demand, based on a table of mount points and file-structure
names. Components are integrated to support transparent sharing, although
this integration is limited and is not uniform, because each machine may attach
different remote directories to its tree. The resulting structure is versatile.

We can achieve total integration of the component file systems by using the
third approach. A single global name structure spans all the files in the system.
Ideally, the composed file-system structure is isomorphic to the structure of
a conventional file system. In practice, however, the many special files (for
example, UNIX device files and machine-specific binary directories) make this
goal difficult to attain.

Toevaluate naming structures, we look at their administrative complexity.
The most complex and most difficult-to-maintain structure is the NFS structure.
Because any remote directory can be attached anywhere onto the local directory
tree, the resulting hierarchy can be highly unstructured. If a server becomes
unavailable, some arbitrary set of directories on different machines becomes
unavailable. In addition, a separate accreditation mechanism controls which
machine is allowed to attach which directory to its tree, Thus, a user might
be able to access a remote directory tree on one client but be denied access on
another client.

15.2.3 implementation Techniques

Implementation of transparent naming requires a provision for the mapping
of a file name to the associated location. To keep this mapping manageable,
we must aggregate sefs of files into component units and provide the mapping
- on a component-unit basis rather than on a single-file basis. This aggregation
serves administrative purposes as well. UNIX-like systems use the hierarchical
directory tree to provide name-to-location mapping and to aggregate files
recursively into directories.

To enhance the availability of the crucial mapping information, we can use
replication, local caching, or both. As we noted, location independence means
that the mapping changes over time; hence, replicating the mapping makes
a simple vet consistent update of this information impossible. A technigue
to overcome this obstacle is to introduce low-level location-independent file
identifiers. Textual file names are mapped to lower-level file identifiers that
indicate to which component unit the file belongs. These identifiers are still
location independent. They can be replicated and cached freely without being
invalidated by migration of component units. The inevitable price is the need
for a second level of mapping, which maps component units to locations and
needs a simple yet consistent update mechanism. Implementing UNIX-like

548

15.3

Chapter 15 : © oo

directory trees using these low-level, location-independent identifiers makes
the whole hierarchy invariant under component-unit migration. The only
aspect that does change is the component-unit location mapping,.

A common way to implement low-level identifiers is to use structured
names. These names are bit strings that usually have two parts. The first
part identifies the component unit to which the file belongs; the second part
identifies the particular file within the unit. Variants with more parts are
possible. The invariant of structured names, however, is that individual parts
of the name are unique at all times only within the context of the rest of the
parts. We can obtain uniqueness at all times by taking care not to reuse a name
that is still used, by adding sufficiently more bits (this method is used in AFS),
or by using a timestamp as one part of the name (as done in Apollo Domain).
Another way to view this process is that we are taking a location-transparent
system, such as Ibis, and adding another level of abstraction to produce a
location-independent naming scheme.

Aggregating files into component units and using lower-level location-
independent file identifiers are techniques exemplified in AFS.

Consider a user who requests access to a remote file. The server storing the file
has been located by the naming scheme, and now the actual data transfer must
take place.

One way to achieve this transfer is through a remote-service mechanism,
whereby requests for accesses are delivered to the server, the server machine
performs the accesses, and their results are forwarded back to the user. One
of the most common ways of implementing remote service is the remote
procedure call (RPC) paradigm, which we discussed in Chapter 3. A direct
analogy exists between disk-access methods in conventional file systems and
the remote-service method in a DFS: Using the remote-service method is
analogous to performing a disk access for each access request.

Fo ensure reasonable performance of a remote-service mechanism, we can
use a form of caching. In conventional file systems, the rationale for caching is
to reduce disk 1/0 (thereby increasing performance), whereas in DFSs, the goal
is to reduce both network traffic and disk 1/0. In the following discussion, we
describe the implementation of caching in a DFS and contrast it with the basic
remote-service paradigm.

15.3.1 Basic Caching Scheme

The concept of caching is simple. If the data needed to satisfy the access request
are not already cached, then a copy of those data is brought from the server
to the client system. Accesses are performed on the cached copy. The idea is
to retain recently accessed disk blocks in the cache, so that repeated accesses
to the same information can be handled locally, without additional network
traffic. A replacement policy (for example, least recently used) keeps the cache
size bounded. No direct correspondence exists between accesses and traffic to
the server. Files are still identified with one master copy residing at the server
machine, but copies (or parts) of the file are scattered in different caches. When a

153 -« - ' 549

cached copy is modified, the changes need to be reflected on the master copy to
preserve the relevant consistency semantics. The problem of keeping the cached
copies consistent with the master file is the cache-consistency problem, which
we discuss in Section 15.3.4. DFS caching could just as easily be called network
virtual memory; it acts similarly to demand-paged virtual memory, except
that the backing store usually is not a local disk but rather a remote server. NFS
allows the swap space to be mounted remotely, so it actually can implement
virtual memory over a network, notwithstanding the resulting performance
penalty.

The granularity of the cached data in a DFS can vary from blocks of a file to
an entire file. Usually, more data are cached than are needed to satisfy a single
access, so that many accesses can be served by the cached data. This procedure
is much like disk read-ahead (Section 11.6.2). AFS caches files in large chunks (64
KB). The other systems discussed in this chapter support caching of individual
blocks driven by client demand. Increasing the caching unit increases the hit
ratio, but it also increases the miss penalty, because each miss requires more
data to be transferred. It increases the potential for consistency problems as
well. Selecting the unit of caching involves considering parameters such as the
network transfer unit and the RPC protocol service unit (if an RPC protocol is
used). The network transfer unit (for Ethernet, a packet) is about 1.5KB, so larger
units of cached data need to be disassembled for delivery and reassembled on
reception.

Block size and total cache size are obviously of importance for block-
caching schemnes. In UNIX-like systems, common block sizes are 4 KB and 8
KB. For large caches (over 1 MB), large block sizes (over 8 KB) are beneficial. For
smaller caches, large block sizes are less beneficial because they result in fewer
blocks in the cache and a lower hit ratio.

15.3.2 Cache Location

Where should the cached data be stored —on disk or in main memory? Disk
caches have one clear advantage over main-memory caches: They are reliable.
Modifications to cached data are lost in a crash if the cache is kept in volatile
memory. Moreover, if the cached data are kept on disk, they are still there during

recovery, and there is no need to fetch them again. Main-memory caches have
several advantages of their own, however:

+ Main-memory caches permit workstations to be diskless.

+ Data can be accessed more quickly from a cache in main memory than
from one on a disk.

- Technology is moving toward larger and less expensive memory. The
achieved performance speedup is predicted to outweigh the advantages
of disk caches.

» The server caches (used to speed up disk 1/0) will be in main memory
regardless of where user caches are located; if we use main-memory caches
on the user machine, too, we can build a single caching mechanism for use
by both servers and users.

550

Chapter 15

Many remote-access implementations can be thought of as hybrids of
caching and remote service. In NFS, for instance, the implementation is based on
remote service but is augmented with client- and server-side memory caching
for performance. Similarly, Sprite’s implementation is based on caching; but
under certain circumstances, a remote-service method is adopted. Thus, to
evaluate the two methods, we must evaluate to what degree either method is
emphasized.

The NFs protacol and most implementations do not provide disk caching.
Recent Solaris implementations of NFS (Solaris 2.6 and beyond) include a client-
side disk caching option, the cachefs file system. Once the NFS client reads
blacks of a file from the server, it caches them in memory as well as on disk.
If the memory copy is flushed, or even if the system reboots, the disk cache
is referenced. If a needed block is neither in memory nor in the cachefs disk
cache, an RP’C is sent to the server to retrieve the block, and the block is written
into the disk cache as well as stored in the memory cache for client use.

15.3.3 Cache-Update Policy

The policy used to write modified data blocks back to the server’s master copy
has a critical effect on the system’s performance and reliability. The simplest
policy is to write data through to disk as soon as they are placed in any cache.
The advantage of a write-through policy is reliability: Little information is
lost when a client system crashes. However, this policy requires each write
access to wait until the information is sent to the Server, so it causes poor write
performance. Caching with write-through is equivalent to using remote service
for write accesses and exploiting caching only for read accesses.

An alternative is the delayed-write policy, also known as write-back
caching, where we delay updates to the master copy. Modifications are written
to the cache and then are written through to the server at a later time. This
policy has two advantages over write-through. First, because writes are made
to the cache, write accesses complete much more quickly. Second, data may be
overwritten before they are written back, in which case only the last update
needs to be written at all. Unfortunately, delayed-write schemes introduce
reliability problems, since unwritten data are lost whenever a user machine
crashes.

Variations of the delayed-write policy differ in when modified data blocks
are flushed to the server. One alternative is to flush a block when it is about to
be ejected from the client’s cache. This option can result in good performance,
but some blocks can reside in the client’s cache a long time before they are
written back to the server. A compromise between this alternative and the
write-through policy is to scan the cache at regular intervals and to flush
blocks that have been modified since the most recent scan, just as UNIX scans
its local cache. Sprite uses this policy with a 30-second interval. NF5 uses the
policy for file data, but once a write is issued to the server during a cache
flush, the write must reach the server’s disk before it is considered complete.
NFS treats metadata (directory data and file-attribute data) differently. Any
metadata changes are issued synchronously to the server. Thus, file-structure
toss and directory-structure corruption are avoided when a client or the server
crashes.

153 P T 551

NFS server

memory cache
(write-through})

network B—‘__ workstation

memory cache

(write-back)

local disk storage

| diskcache |
(write-through}

Figure 15.1 Cachefs and its use of caching.

" For NFS with cachefs, writes are also written to the local disk cache area
when they are wtitten to the server, tq keep all copies consistent. Thus, NFS
with cachefs improves performance over standard NFS on a read request with
a cachefs cache hit but decreases performance for read or write requests with
a cache miss. As with all caches, it is vital to have a high cache hit rate to gain
performance, Cachefs and its use of write-through and write-back caching is
shown in Figure 15.1.

- Yet another variation on delayed write is to write data back to the server
when the file is closed. This write-on-close pelicy is used in AFS. In the case
of files that are open for short periods or are modified rarely, this policy
does not significantly reduce network traffic. In addition, the write-on-close
policy requires the closing process to delay while the file'is written through,
which reduces the performance advantages of delayed writes. For files that are
open for long periods and are modified frequently, however, the performance
advantages of this policy over delayed write with more frequent flushing are
apparent.

15.3.4 Consistency

A client machine is faced with the problem of deciding whether or nota locally
cached copy of the data is consistent with the master copy {and hence can be
used). If the client machine determines that its cached data are out of date,
accesses can no longer be served by those cached data. An up-to-date copy of
the data needs to be cached. There are two approaches to verifying the validity
of cached data: ’

Client-initiated apprdach. The client initiates a validity check in which it
contacts the server and checks whether the local data are consistent with

552

Chapter 15

the master copy. The frequency of the validity checking is the crux of
this approach and determines the resulting consistency semantics. It can
range from a check before every access to a check only on first access to
a file (on file open, basically). Every access coupled with a validity check
is delayed, compared with an access served immediately by the cache.
Alternatively, checks can be initiated at fixed time intervals. Depending
on its frequency, the validity check can load both the network and the
server.

2. Server-initiated approach. The server records, for each client, the files
(or parts of files) that it caches. When the server detects a potential
inconsistency, it must react. A potential for inconsistency occurs when
two different clients in conflicting modes cache a file. [f UNIX semantics
(Section 10.5.3) is implemented, we can resolve the potential inconsistency
by having the server play an active role. The server must be notified
whenever a file is opened, and the intended mode (read or write) must
be indicated for every open. The server can then act when it detects that
file has been opened simultaneously in conflicting modes by disabling
caching for that particular file. Actually, disabling caching resuits in
switching to a remote-service mode of operation.

15.3.5 AComparison of Caching and Remote Service

Essentially, the choice between caching and remote service trades off poten-
tially increased performance with decreased simplicity. We evaluate this
tradeoff by listing the advantages and disadvantages of the two methods:

* When caching is used, the local cache can handle a substantial number
of the remote accesses efficiently. Capitalizing on locality in file-access
patterns makes caching even more attractive. Thus, most of the remote
accesses will be served as fast as will local ones. Moreover, servers are
contacted only occasionally, rather than for each access. Consequently,
server load and network traffic are reduced, and the potential for scalability
is enhanced. By contrast, when the remote-service method is used, every
remote access is handled across the network. The penalty in network traffic,
server load, and performance is obvious.

* Total network overhead is lower for transmitting big churtks of data (as
is done in caching) than for transmitting series of responses to specific
requests (as in the remote-service method). Furthermore, disk-access
routines on the server may be better optimized if it is known that requests
will always be for large, contiguous segments of data rather than for
random disk blocks.

* The cache-consistency problem is the major drawback of caching. When
access patterns exhibit infrequent writes, caching is superior. However,
when writes are frequent, the mechanisms employed to overcome the
consistency problem incur substantial overhead in terms of performance,
network traffic, and server load.

« So that caching will confer a benefit, execution should be carried out on
machines that have either local disks or large main memories. Remote

154 - 0 .0 R v sadeiess Rervice 553

access on diskless, small-memory-capacity machines should be done
through the remote-service method.

= In caching, since data are transferred en masse between the server and the
client, rather than in response to the specific needs of a file operation, the
lower-level intermachine interface is different from the upper-level user
interface. The remote-service paradigm, in contrast, is just an extension of
the local file-system interface across the network. Thus, the intermachine
interface mirrors the user interface.

15 4 «.CZ‘?{ bk E e sgn Ateed, b PR -

There are two approaches for storing server-side information when a client
accesses remote files: Either the server tracks each file being accessed by
each client, or it simply provides blocks as they are requested by the client
without knowledge of how those blocks are used. In the former case, the
service provided is stateful; in the latter case, it is stafeless.

The typical scenario of a stateful file service is as follows: A client must
perform an open() operation on 4 file before accessing that file. The server
fetches information about the file from its disk, stores it in its memory, and gives
the client a connection identifier that is unique to the client and the oper file.
(In UNIX terms, the server fetches the inode and gives the clienta file descriptor,
which serves as an index to an in-core table of inodes.) This identifier is used for
subsequent accesses until the session ends. A stateful service is characterized
as a connection between the client and the server during a session. Either on
closing the file or by a garbage-collection mechanism, the server must reclaim
the main-memory space used by clients that are no longer active. The key point
regarding fault tolerance in a stateful service approach is that the server keeps
main-memory information about its clients. AFS is a stateful file service.

A stateless file service avoids state information by making each request
self-contained. That is, each request identifies the file and the position in the
file (for read and write accesses) in full. The server does not need to keep a
table of open files in main memory, although it usually does so for efficiency
reasons. Moreover, there is no need to establish and terminate a connection
through open() and close() operations. They are totally redundant, since
each file operation stands on its own and is not considered part of a session. A
client process would open a file, and that open would not result in the sending
of a remote message. Reads and writes would take place as remote messages
(or cache lookups). The final close by the client would again result in only a
local operation. NFS is a stateless file service.

The advantage of a stateful over a stateless service is increased perfor-
mance. File information is cached in main memory and can be accessed easily
via the connection identifier, thereby saving disk accesses. In addition, a stateful
server knows whether a file is open for sequential access and can therefore
read ahead the next blocks. Stateless servers cannot do so, since they have no
knowledge of the purpose of the client’s requests.

The distinction between stateful and stateless service becomes more
evident when we consider the effects of a crash that occurs during a service
activity. A stateful server loses all its volatile state in a crash. Ensuring the

554

Chapter15 ' v.o0f o L

graceful recovery of such a server involves restoring this state, usually by a
recovery protocol based on a dialog with clients. Less graceful recovery requires
that the operations that were underway when the crash occurred be aborted.
A different problem is caused by client failures. The server needs to become
aware of such failures so that it can reclaim space allocated to record the state of
crashed client processes. This phenomenon is sometimes referred to as orphan
detection and elimination.

A stateless computer server avoids these problems, since a newly reincar-
nated server can respond to a self-contained request without any difficulty.
Therefore, the effects of server failures and recovery are almost unnoticeable.
There is no difference between a slow server and a recovering server from a
client’s point of view. The client keeps retransmitting its request if it receives
no response.

The penalty for using the robust stateless service is longer request messages
and slower processing of requests, since there is no in-core information to speed
the processing. In addition, stateless service imposes additional constraints
on the design of the DFS. First, since each request identifies the target file, a
uniform, system-wide, low-level naming scheme should be used. Translating
remote to local names for each request would cause even slower processing
of the requests. Second, since. clients retransmit requests for file operations,
these operations must be idempotent; that is, each operation must have the
same effect and return the same output if executed several times consecutively.
Self-contained read and write accesses are,idempotent, as long as they use an
absolute byte count to indicate the position within the file they access and
do not rely on an incremental offset (as done in UNIX read () and write()
system calls). However, we must be careful when implementing destructive
operations (such as deleting a file) to make them idempotent, too.

In some environments, a stateful service is a necessity. If the server employs
the server-initiated method for cache validation, it cannot provide stateless
service, since it maintains a record of which files are cached by which clients.

The way UNIX uses file descriptors and implicit offsets is inherently stateful.
Servers must maintain tables to map the file descriptors to inodes and must
store the current offset within a file. This requirement is why NFS, which
employs a stateless service, does not use file descriptors and does include
an explicit offset in every access.

Replication of files on different machines in a distributed file system is a
useful redundancy for improving availability. Multimachine replication can
benefit performance too: Selecting a nearby replica to serve an access request
results in shorter service time.

The basic requirement of a replication scheme is that different replicas of
the same file reside on failure-independent machines. That is, the availability
of one replica is not affected by the availability of the rest of the replicas.
This obvious requirement implies that replication management is inherently
a location-opaque activity. Provisions for placing a replica on a particular
machine must be available.

It is desirable to hide the details of replication from users. Mapping a
replicated file name to a particular replica is the task of the naming scheme.
The existence of repticas should be invisible to higher levels. At lower

levels, however, the replicas must be distinguished from one another by

different lower-level names. Another transparency requirement is providing

15.5

15.5 P : 553

replication control at higher levels. Replication control includes determination
of the degree of replication and of the placement of replicas. Under certain
circumstances, we may want to expose these details to users. Locus, for
instance, provides users and system administrators with mechanisms to control
the replication scheme.

The main problem associated with replicas is updating. From a user’s
point of view, replicas of a file denote the same logical entity, and thus an
update to any replica must be reflected on all other replicas. More precisely,
the relevant consistency semantics must be preserved when accesses to replicas
are viewed as virtual accesses to the replicas’ logical files. If consistency is not
of primary importance, it can be sacrificed for availability and performance.
In this fundamental tradeoff in the area of fault tolerance, the choice is
between preserving consistency at all costs, thereby creating a potential for
indefinite blocking, and sacrificing consistency under some (we hope, rare)
circumstances of catastrophic failures for the sake of guaranteed progress.
Locus, for example, employs replication extensively and sacri fices consistency
in the case of network partition for the sake of availability of files for read and
write accesses. _

Ibis uses a variation of the primary-copy approach. The domain of the
name mapping is a pair <primary-replica-identifier, local-replica-identifier>. 1f no
local replica exists, a special value is used. Thus, the mapping is relative to a
machine. Tf the local replica is the primary one, the pair contains two identical
identifiers. Ibis supports demand replication, an automatic replication-control
policy similar to whole-file caching. Under demand replication, reading of
a nonlocal replica causes it to be cached locally, thereby generating a new
nonprimary replica. Updates are performed only on the primary copy and
cause all other replicas to be invalidated through the sending of appropriate
messages. Atomic and serialized invalidation of all nonprimary replicas is not
guaranteed. Hence, a stale replica may be considered valid. To satisfy remote
write accesses, we migrate the primary copy to the requesting machine.

- TR R L4 LA L% oo

Andrew is a distributed computing-environment designed and implemented
at Camnegie Mellon University. The Andrew file system (AFS) constitutes the
underlying information-sharing mechanism among clients of the environment.
The Transarc Corporation took over development of AFS, then was purchased
by IBM. IBM has since produced several commercial implementations of AFS.
AFS was subsequently chosen as the DFS for an industry coalition; the result
was Transarc DFS, part of the distributed computing environment (DCE) from
the OSF organization.

In 2000, IBM’s Transarc Lab announced that AFS would be an open-source
product (termed OpenAFS) available under the 1BM public license and Transarc
DES was canceled as a commercial product. OpenAFs is available under most
commercial versions of UNIX as well as Linux and Microsoft Windows systems.
Many UNIX vendors, as well as Microsoft, support the DCE system and its DFS,
which is based on AFS, and work is ongoing to make DCE a cross-platform,
universally accepted DFS. As AFS and Transarc DFS are very similar, we describe
AFS throughout this section, unless Transarc DFS is named specifically.

556

Chapter 15 "3 - o 5 Ui mysbeine

AFs seeks to solve many of the problems of the simpler DFSs, such as
NFS, and is arguably the most feature-rich nonexperimental DFS. It features
a uniform name space, location-independent file sharing, client-side caching
with cache consistency, and secure authentication via Kerberos. It also includes
server-side caching in the form of replicas, with high availability through
automatic switchover to a replica if the source server is unavailable, One of
the most formidable attributes of AFS is scalability: The Andrew system is
targeted to span over 5,000 workstations. Between AFS and Transarc DFS, there
are hundreds of implementations worldwide.

15.5.1 Overview

AFS distinguishes between client machines (sometimes referred to as worksta-
tions) and dedicated server machines. Servers and clients originally ran only 4.2
BSD UNIX, but AFS has been ported to many operating systems. The clients and
servers are interconnected by a network of LANs or WANSs.

Clients are presented with a partitioned space of file names: a local name
space and a shared name space. Dedicated servers, collectively called Vice
after the name of the software they run, present the shared name space to the
clients as a homogeneous, identical, and location-transparent file hierarchy.
The local name space is the root file system of a workstation, from which
the shared name space descends. Workstations run the Virtue protocol to .
communicate with Vice, and each is required to have a local disk where it
stores its local name space. Servers collectively are responsible for the storage
and management of the shared name space. The local name space is small,
is distinct for each workstation, and contains system programs essential for
autonomous operation and better performance. Also local are temporary files
and files that the workstation owner, for privacy reasons, explicitly wants to
store locally.

Viewed at a finer granularity, clients and servers are structured in clusters
interconnected by a WAN. Each cluster consists of a collection of workstations
on a LAN and a representative of Vice called a eluster server, and each cluster
is connected to the WAN by a router. The decomposition into clusters is
done primarily to address the problem of scale. For optimal performance,
workstations should use the server on their own cluster most of the time,
thereby making cross-cluster file references relatively infrequent.

The file-system architecture is also based on considerations of scale. The
basic heuristic is to offload work from the servers to the clients, in light

.of experience indicating that server CPU speed is the system’s bottleneck.

Following this heuristic, the key mechanism selected for remote file operations
is to cache files in large chunks (64 KB). This feature reduces file-open latency
and allows reads and writes to be directed to the cached copy without
frequently involving the servers. '

There are some additional issues concerning the design of AFS, which we
briefly discuss here:

Client mobility. Clients are able to access any file in the shared name
space from any workstation. A client may notice some initial performance
degradation due to the caching of files when accessing files from a
workstation other than the usual one.

15.5 Cohr 557

Security. The Vice interface is considered the boundary of trustworthiness,
because no client programs are executed on Vice machines. Authentication
and secure-transmission functions are provided as part of a connection-
based communication package based on the RPC paradigm. After mutual
authentication, a Vice server and a client communicate via encrypted
messages. Encryption is performed by hardware devices or {more slowly)
in software. Information about clients and groups is stored in a protection
database replicated at each server.

Protection. AFS provides access lists for protecting directories and the
regular UNIX bits for file protection. The access list may contain information
about those users allowed to access a directory, as well as information
about those users net allowed to access it. Thus, it is simple to specify that
everyone except, say, [im can access a directory. AFS supports the access
types read, write, lookup, insert, administet, lock, and delete.

Heterogeneity. Defining a clear interface to Vice is a key for integration of
diverse workstation hardware and operating systems. So that heterogene-
ity is facilitated, some files in the local /bin directory are symbolic links
pointing to machine-specific executable files residing in Vice.

156.5.2 The Shared Name Space

AF5’s shared name space is made up of component units called volumes. The
volumes are unusually small component units. Typically, they are associated
with the files of a single client. Few volumes reside within a single disk
partition, and they may grow (up to a quota) and shrink in size. Conceptually,
volumes are glued together by a mechanism similar to the UNIX mount
mechanism. However, the granularity difierence is significant, since in UNIX
only anentire disk partition (containing a file system) can be mounted. Volumes
are a key administrative unit and play a vital role in identifying and locating
an individual file.

A Vice file or directory is identified by a tow-level identifier called a fid.
Each AFS directory entry maps a path-name component 4o a fid. A fid is 96 bits
-long and has three equal-length components: a volume number. a viode number,
and a uniguifier. The vnode number is used as an index into an array containirg
the inodes of files in a single volume. The uniquifigr allows reuse of vnode
numbers, thereby keeping certain data structures tompact. Fids are location
transparent; therefore, file movements from server to server do not invalidate
cached directory contents. : '

Location information is kept on a volume basis in a velume-location
database replicated on each server. A client can identify the location of every
volume in the system by querving this database. The aggregation of files into
volumes makes it possible to keep the location database at a manageable size.

To balance the available disk space and utilization of servers, volumes
need to be migrated among disk partitions and servers. When a volume
is shipped to its new location, its original server is left with temporary
forwarding information, so that the location database does not need to be
updated synchronously. While the volume is being transferred, the originat
server can still handle updates, which are shipped later to the new server.
At some point, the volume is briefly disabled so that the recent mndifications

558

Chapter 15

can be processed; then, the new volume becomes available again at the new
site. The volume-movement operation is atomic; if either server crashes, the
operation is aboried.

Read-only replication at the granularity of an entire volume is supported
for system-executable files and for seldom-updated files in the upper levels
of the Vice name space. The volume-location database specifies the server
containing the only read-write copy of a volume and a list of read-only
replication sites.

15.5.3 File Operations and Consistency Semantics

The fundamental architectural principle in AFS is the caching of entire files
from servers. Accordingly, a client workstation interacts with Vice servers
only during opening and closing of files, and even this interaction is not
always necessary. Reading and writing files do not cause remote interaction (in
contrast to the remote-service method}. This key distinction has far-reaching
ramifications for performance, as well as for semantics of file operations.

The operating system on each workstation intercepts fite-system calls and
forwards them to a client-level process on that workstation. This process, called
Venus, caches files from Vice when they are opened and stores modified copies
of files back on the servers from which they came when they are closed. Venus
may contact Vice only when a file is opened or closed; reading and writing of
individual bytes of a file are performed directly on the cached copy and bypass
Venus. As a result, writes at some sites are not visible immediately at other
sites.

Caching is further exploited for future opens of the cached file. Venus
assumes that cached entries (files or directories) are valid unless notified
otherwise. Therefore, Venus does not need to contact Vice on a file open to
validate the cached copy. The mechanism to support this policy, called callback,
dramatically reduces the number of cache-validation requests received by
servers. It works as follows. When a client caches a file or a directory, the
server updates its state information to record this caching. We say that the
client has a callback on that file. The server notifies the client before allowing
another client to modify the file. In such a case, we say that the server removes
the callback on the file for the former client. A client can use a cached file for
open purposes only when the file has a callback. If a client closes a file after
modifying it, all other clients caching this file lose their callbacks. Therefore,
when these cisents open the file later; thev have to get the new version from
the server.

Reading and writing bytes of a file are done directly by the kernel without
Venus’s intervention on the eached copy. Venus regains control when the file is--
closed. If the file has been modified locally, it updates the file on the appropriate

server. Thus, the only occasions on which Venus contacts Vice servers are on

opens of files that either are not in the cache or have had their callback revoked
and on closes of locally modified files.

Basically, AFS implements session semantics. The only exceptions are
file operations other than the primitive read and write (such as protection
changes at the directory level), which are visible everywhere on the network
immediately after the operation completes.

15,5 Cate 559

In spite of the callback mechanism, a small amount of cached validation
traffic is still present, usually to replace callbacks lost because of machine or
network failures. When a workstaticn is rebooted, Venus considers all cached
files and directories suspect, and it generates a cache-validation request for the
first use of each such entry.

The callback mechanism forces each server to maintain callback informa-
tion and each client to maintain validity information. If the amount of callback
information maintained by a server is excessive, the server can break callbacks
and reclaim some storage by unilaterally notifying clients and revoking the
validity of their cached files. If the callback state maintained by Venus gets
out of sync with the corresponding state maintained by the servers, some
inconsistency may result.

Venus also caches contents of directories and symbolic links, for path-
name translation. Each component in the path name is fetched, and a callback
is established for it if it is not alreadv cached or if the client does not have
a callback on it. Venus does lookups on the fetched directories locally, using
fids. No requests are forwarded from one server to another. At the end of a
path-name traversal, all the intermediate directories and the target file are in
the cache with callbacks on them. Future open calls to this file will involve no
network communication at ali, unless a callback is broken on a component of
the path name.

The only exception to the caching policy is a modification to a directory
that is made directly on the server responsible for that directory for reasons
of integrity. The Vice interface has well-defined operations for such purposes.
Venus reflects the changes in its cached copy to avoid re-fetching the directory.

15.5.4 Implementation

Client processes are interfaced to a UNIX kernel with the usual set of system
calls. The kernel is modified slightly to detect references to Vice files in the
relevant operations and to forward the requests to the client-level Venus process
at the workstation. .

Venus carries out path-name translation component by component, as
described above. It has a mapping cache that associates volumes to server
locations in order to avoid server interrogation for an already known volume
location. If a volume is not present in this cache, Venus contacts any server
to which it already has a connection, requests the location information, and
enters that information into the mapping cache. Unless Venus already has
a connection to the servet, it establishes a new connection. It then uses this
connection to fetch the file or directory. Connection establishment is needed for
authentication and security purposes. When a target file is found and cached, a
copy is created on the local disk. Venus then returns to the kernel, which opens
the cached copy and returns its handie to the client process.

The UNIX file system is used as a low-level storage system for both AFS
servers and clients. The client cache is a local directory on the workstation’s
disk. Within this directory are files whose names are placeholders for cache
entries, Both Venus and server processes access UNIX files directly by the latter’s
inodes to avoid the expensive path-name-to-inode translation routine (namei).
Because the internal inode interface is not visible to client-level processes (both
Venus and server processes are client-level processes), an appropriate set of

560

15.6

Chapter 15

additional system calls was added. DFS uses its own journaling file system to
improve performance and reliability over UFs.

Venus manages two separate caches: one for status and the other for data.
It uses a simple least-recently-used (LRU) algorithm to keep each of them
bounded in size. When a file is flushed from the cache, Venus notifies the
appropriate server to remove the callback for this file. The status cache is kept
in virtual memory to allow rapid servicing of stat () {file-status-returning)
system calls. The data cache is resident on the local disk, but the UNIX 1/0
buffering mechanism does some caching of disk blocks in memory that is
transparent to Venus.

A single client-level process on each file server services all file requests from
clients. This process uses a lightweight-process package with non-preemptible
scheduling to service many client requests concurrently. The RPC package
is integrated with the lightweight-process package, thereby allowing the file
server to concurrently make or service one RPC per lightweight process. The
RPC package is built on top of a low-level datagram abstraction. Whole-file
transfer is implemented as a side effect of the RPC calls, One RPC connection
exists per client, but there is no a priori binding of lightweight processes to these
connections. Instead, a poot of lightweight processes services client requests
on all connections. The use of a single multithreaded server process allows the
caching of data structures needed to service requests. On the negative side,
a crash of a single server process has the disastrous effect of paralyzing this
particular server.

A DFs is a file-service system whose clients, servers, and storage devices are
dispersed among the sites of a distributed system. Accordingly, service activity
has to be carried out across the network; instead of a single centralized data
repository, there are multiple independent storage devices.

Ideally, a DFs should look to its clients like a conventional, centralized
file system. The multiplicity and dispersion of its servers and storage devices
should be made transparent. That is, the client interface of a DFS should not
distinguish between local and remote files. It is up to the DFS to locate the files
and to arrange for the transport of the data. A transparent DFS facilitates client
mobility by bringing the client’s environment to the site where the client logs
in.

There are several approaches to naming schemes in a DFS. In the simplest
appreach, files are named by some combination of their host narie and local
name, which guarantees a unique system-wide name. Another approach,
popularized by NFS, provides a means to attach remote directories to local
directories, thus giving the appearance of a coherent directory tree.

Requests to access a remote file are usually handled by two complementary
methods. With remote service, requests for accesses are delivered to the server.
The server machine performs the accesses, and their results are forwarded
back to the client. With caching, if the data needed to satisfy the access request
are not already cached, then a copy of the data is brought from the server
to the client. Accesses are performed on the cached copy. The idea is to
retain recently accessed disk blocks in the cache, so that repeated accesses

561

to the same information can be handled locally, without additional network
traffic. A replacement policy is used to keep the cache size bounded. The
problem of keeping the cached copies consistent with the master file is the
cache-consistency problem.

There are two approaches to server-side information. Either the server
tracks each file the client accesses, or.it simply provides blocks as the client
requests them without krowledge of their use. These approaches are the
stateful versus stateless service paradigms.

Replication of files on different machines is a useful redundancy for
improving availability. Multimachine replication can benefit performance, too,
since selecting a nearby replica to serve an access request results in shorter
service time.

AFS is a feature-rich DFS characterized by location independence and loca-
tion transparency. It also imposes significant consistency semantics. Caching
and replication are used to improve performance.

151 What are the benefits of a DFS compared with a file system in a
centralized system?

15.2 Which of the example DFSs discussed in this chapter would handle a
large, multiclient database application most efficiently? Explain your
answer.

153 Under what circumstances would a client prefer a location-
transparent DFS? Under what circumstances would she prefer a
location-independent DFS? Discuss the reasons for these preferences.

15.4 What aspects of a distributed system would you select for a system
running on a totally reliable network?

15.5 Compare and contrast the techniques of caching disk blocks locally, on
a client system, and remotely, on a server.

15.6 AFs is designed to support a large number of clients. Discuss three
techniques used to make AFS a scalable system.,

15.7 What are the benefits of mapping objects into virtual memory, as Apollo
Domain does? What are the drawbacks?

15.8 Describe some of the fundamental differences between AFS and NFS
(see Chapter 11).

Endohoc apdnonl Noles

Discussions concerning consistency and recovery control for replicated files
were offered by Davcev and Burkhard [1985]. Management of replicated files
in a UNIX environment was covered by Brereton [1986] and Purdin et al. {1987].
Wah [1984] discussed the issue of file placement on distributed computer

562

Chapter 15

systems. A detailed survey of mainly centralized file servers was given in
Svobodova [1984].

Sun’s network file system (NFS) was presented by Callaghan [2000] and
Sandberg et al. [1985]. The AFS system was discussed by Morris et al. [1986],
Howard et al. [1988], and Satyanarayanan {1990). Information about OpenAFs
is available from http:/ /www.openafs.org

Many different and interesting DFSs were not covered in detail in this
text, including UNIX United, Sprite, and Locus. UNIX United was described
by Brownbridge et al. [1982]. The Locus system was discussed by Popek and
Walker {1985]). The Sprite system was described by Ousterhout et al. [1988]
and Nelson et al. [1988]. Distributed file systems for mobile storage devices
were discussed in Kistler and Satyanarayanan [1992] and Sobti et al. [2004].
Considerable research has also been performed on cluster-based distributed
file systems (Anderson et al. [1995], Lee and Thekkath [1996], Thekkath et al.
[1997], and Anderson et al. [2000]). Distributed storage systems for large-scale,
wide-area settings were presented in Dabek et al. [2001] and Kubiatowicz et al.
f2000].

16.1

CHAPTER

In Chapter 6, we described various mechanisms that allow processes to
synchronize their actions. We also discussed a number of schemes to ensure
the atomicity of a transaction that executes either in isolation or concurrently
with other transactions. In Chapter 7, we described various methods that an
operating system can use to deal with the deadlock problem. In this chapter,
we examine how centralized synchronization mechanisms can be extended to
a distributed environment. We also discuss methods tor handling deadlocks in
a distributed system.

In a centralized system, we can always determine the order in which two events
occurred, since the system has a single common memory and clock. Many
applications may require us to determine order. For example, in a tesource-
allocation scheme, we specify that a resource can be used only after the resource
has been granted. A distributed system, however, has no common memory and
no common clock. Therefore, it is sometimes impossible to say which of two
events occurred first. The happened-before relation is only a partial ordering of
the events in distributed systems. Since the ability to define a total ordering is
crucial in many applications, we present a distributed algorithm for extending
the happened-before relation to a consistent total ordering of all the events in the
system.

16.1.1 The Happened-Before Relation

Since we are considering only sequential processes, all events executed in a
single process are totally ordered. Also, by the law of causality, a message can
be received only after it has been sent. Therefore, we can define the fuappened-
betore relation (denoted by —) on a set of events as follows (assuming that
sending and receiving a message constitutes an event):

{ A and B are events in the same process, and A was executed before B,
then A — B.

563

564

Chapter 16

If A is the event of sending a message by one process and B is the event
of receiving that message by another process, then A — B.

IfA—-BandB — Cthen A — C.

Since an event cannot happen before itself, the — relation is an irreflexive
partial ordering,.

If two events, A and B, are not related by the — relation (that is, A did
not happen before B, and B did not happen before A), then we say that these
two events were executed concurrently. In this case, neither event can causally
affect the other. If, however, A — B, then it is possible for event A to affect
event B causally.

A space—time diagram, such as that in Figure 16.1, can best illustrate the
definitions of concurrency and happened-before. The horizontal direction repre-
sents space (that is, different processes), and the vertical direction represents
time. The labeled vertical lines denote processes (or processors). The labeled
dots denote events. A wavy line denotes a message sent from one process to
another. Events are concurrent if and only if no path exists between them.

For example, these are some of the events related by the happened-before
relation in Figure 16.1:

Pi— g2

o — (4

q:; — F3

p1 — g4 (since p; — g7 and 42 — qs)

These are some of the concurrent events in the system:

go and p2
rg and g3
ro and py
gz and p;

We cannot know which of two concurrent events, such as g and p, happened
first. However, since neither event can affect the other (there is no way for one
of them to know whether the other has occurred yet), it is not important which

Figure 16.1 Relative time for three concurrent processes,

16.2

16.2 R 563

happened first. It is important only that any processes that care about the order
of two concurrent events agree on some order.

16.1.2 Implementation

To determine that an event A happened before an event B, we need either a
common clock or a set of perfectly synchronized clocks. Since neither of these
is available in a distributed system, we must define the happened-before relation
without the use of physical clocks.

We associate with each system event a timestamp. We can then define the
global ordering requirement: For every pair of events A and B, if A — B, then
the timestamp of A is less than the timestamp of B. (Below, we will see that the
converse need not be true.)

How do we enforce the global ordering requirement in a distributed
environment? We define within each process P; a logical clock, LC;. The
logical clock can be implemented as a simple counter incremented between
any two successive events executed within a process. Since the logical clock
has a monotonically increasing value, it assigns a unique number to every
event, and if an event A occurs before event B in process P;, then LCi(A) <
L.C;(B). The timestamp for an event is the value of the logical clock for that
event. This scheme ensures that for any two events in the same process the
global ordering requirement is met.

Unfortunately, this scheme does not ensure that the global ordering
requirement is met across processes. To illustrate the problem, consider two
processes P and P, that communicate with each other. Suppose that P; sends
a message to P, (event A) with LC {A) = 200, and P; receives the message
{event B) with LC,(B) = 195 (because the processor for P: is slower than the
processor for Py, its logical clock ticks more slowly). This situation violates our
requirement, since A — B but the timestamp of A is greater than the timestamp
of B.

To resolve this difficulty, we require a process to advance its logical clock
when it receives a message whose timestamp is greater than the current value
of its logical clock. In particular, if process P, receives a message (event B) with
timestamp { and LC;(B) <, then it should advance its clock so that LC;(B) = +
1. Thus, in our example, wher. P, receives the message from Py, it will advance
its logical clock so that LC»(B) = 201.

Finally, to realize a total ordering, we need only observe that, with our
timestarap-ordering scheme, if the timestamps of two events, A and B, are the
same, then the events are concurrent. In this case, we may use process identity
numbers to break ties and to create a total ordering. The use of timestamps is
further discussed in Section 16.4.2.

In this section, we present a number of different algorithms for implementing
mutual exclusion in a distributed environment. We assume that the system
consists of # processes, each of which resides at a different processor. To simplify
our discussion, we assume that processes are numbered uniquely from 1 to n

566

Chapter 16

and that a one-to-one mapping exists between processes and processors (that
is, each process has its own processor).

16.2.1 Centralized Approach

In a centralized approach to providing mutual exclusion, one of the processes
in the system is chosen to coordinate the entry to the critical section. Each
process that wants to invoke mutual exclusion sends a request message to the
coordinator. When the process receives a reply message from the coordinator,
it can proceed to enter its critical section. After exiting its critical section,
the process sends a relense message to the coordinator and proceeds with its
execution.

On receiving a request message, the coordinator checks to see whether some
other process is in s critical section. If no process is in its critical section, the
coordinator immediately sends back a reply message. Otherwise, the request
is queued. When the coordinator receives a release message, it removes one
of the request messages from the queue (in accordance with some scheduling
algorithm) and sends a reply message to the requesting process.

It should be clear that this algorithm ensures mutual exclusion. In addition,
if the scheduling policy within the coordinator is fair-—such as first-come, first-
served (FCFS) scheduling—no starvation can occur. This scheme requires three
messages per critical-section entry: a request, a reply, and a release,

If the coordinator process fails, then a new process must take its place.
In Section 16.6, we describe some algorithms for electing a unique new
coordinator. Once a new coordinator has been elected, it must poll all the
processes in the system to reconstruct its request queue. Once the queue has
been constructed, the computation can resuine.

16.2.2 Fully Distributed Approach

If we want to distribute the decision making across the entire system, then
the solution is far more complicated. One approach, described next, uses an
algorithm based on the event-ordering scheme described in Section 16.1.

When a process P, wants to enter its critical section, it generates a new
timestamp, TS, and sends the message request(F;, TS) to all processes in the
system (including itself). On receiving a reguest message, a process may reply
immediately (that is, send a reply message back to P)), or it may defer sending
areply back {because it is already in its critical section, for example). A process
that has received a reply message from all other processes in the system can
enter its critical section, queueing incoming requests and deferring them. After
exiting its critical section, the process sends reply messages to all its deferred
requests.

The decision whether process P; replies immediately to a request(P;, TS)
message or defers its reply is based on three factors:

If process P is in its critical section, then it defers its reply to P;.

It process P; does not want to enter its critical section, then it sends a reply
immediately to P,

If process P; wants to enter its critical section but has not vet entered
it, then it compares its own request timestamp with the timestamp of

16.2 R 567

the incoming request made by process P;. If its own request timestamp
is greater than that of the incoming request, then it sends a reply
immediately to I'; (P, asked first). Otherwise, the reply is deferred.

This algorithm exhibits the following desirable behavior:

Mutual exclusion is obtained.
Freedom from deadlock is ensured.

Freedom from starvation is ensured, since entry to the critical section is
scheduled according to the timestamp ordering. The timestamp ordering
ensures that processes are served in FCFS order.

The number of messages per critical-section entry is 2 x (rn — 1). This
number is the minimum number of required messages per critical-section
entry when processes act independently and concurrently.

To illustrate how the algorithm functions, we consider a system consisting
of processes Py, P, and P3. Suppose that processes P; and P; want to enter
their critical sections. Process Py then sends a message reques! (P1, imestamp
= 10} to processes P, and Ps;, while process sends a message request (Ps,
timestamp = 4) to processes Py and P,. The timestamps 4 and 10 were obtained
from the logical clocks described in Section 16.1. When process P, receives
these request messages, it replies immediately. When process Py receives the
request from process P, it replies immediately, since the timestamp {10} on its
own request message is greater than the timestamp (4) for process P;. When
process P; receives the request message from process I, it defers its reply,
since the timestamp (4) on its request message is less than the timestamp (10)
for the message from process P:. On receiving replies from both process P
and process Py, process Ps can enter its critical section. After exiting its critical
section, process Py sends a reply to process I, which can then enter its critical
section.

Because this scheme requires the participation of all the processes in the
system, however, it has three undesirable consequences:

The processes need to know the identity of all cther processes in the
system. When a new process joins the group of processes participating in
the mutual-exclusion algorithin, the following actions need to be taken:

a. The process must receive the names of all the other processes in the
group.

b. The name of the new process must be distributed to all the other
processes in the group.

This task is not as trivial as it may seem, since some request and reply
messages may be circulating in the system when the new process joins
the group. The interested reader is referred to the Bibliographical Notes
for more details.

If one process fails, then the entire scheme collapses. We can resolve this
difficulty by continuously monitoring the state of all processes in the

568

16.3

Chapter 16

system. If one process fails, then all other processes are notified, so that
they will no longer send reguest messages to the failed process. When a
process recovers, it must initiate the procedure that allows it to rejoin the

group.
Processes that have not entered their critical section must pause fre-

quently to assure other processes that they intend to enter the critical
section.

Because of these difficulties, this protocol is best suited for small, stable sets of
cooperating processes.

16.2.3 Token-Passing Approach

Another method of providing mutual exclusion is to circulate a token among
the processes in the system. A token is a special type of message that is passed
around the system. Possession of the token entitles the holder to enter the
critical section. Since there is only a single token, only one process can be in its
critical section at a time.

We assume that the processes in the system are logically organized in a ring
structure. The physical communication network need not be a ring. As long as
the processes are connected to one another, it is pessible to implement a logical
ring. To implement mutual exclusion, we pass the token around the ring. When
a process receives the token, it may enter its critical section, keeping the token.
After the process exits its critical section, the token is passed around again.
If the process receiving the token does not want to enter its critical section,
it passes the token to its neighbor. This scheme is similar to algorithm 1 in
Chapter 6, but a token is substituted for a shared variable.

If the ring is unidirectional, freedom from starvation is ensured. The
number of messages required to implement mutual exclusion may vary from
one message per entry, in the case of high contention (that is, EVery process
wants to enter its critical section), to an infinite number of messages, in the case
of low contention (that is, no process wants to enter its critical section).

Two types of failure must be considered. First, if the token is lost, an election
must be called to generate a new token. Second, if a process fails, a new logical
ting must be established. In Section 16.6, we present an election algorithm;
others are possible. The development of an algorithm for reconstructing the
ring is left to you in Exercise 16.7.

In Chapter 6, we introduced the concept of an atomic transaction, which is a
program unit that must be executed atomically. That is, either all the operations
associated with it are executed to completion, or none are performed. When we
are dealing with a distributed system, ensuring the atomicity of a transaction
becomes much more complicated than in a centralized system. This difficulty
occurs because several sites may be participating in the execution of a single
transaction. The failure of one of these sites, or the failure of a communication
link connecting the sites, may result in erroneous computations.

163 - v 569

Ensuring that the execution of transactions in the distributed system
preserves atomicity is the function of the transaction coordinator. Each site has
its own local transaction coordinator, which is responsible for coordinating the
execution of all the {ransactions initiated at that site. For each such transaction,
the coordinator is responsible for the following;:

Starting the execution of the transaction

Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution

Coordinating the termination of the transaction, which may result in the
transactions being committed at all sites or aborted at all sites

We assume that each local site maintains a log for recovery purposes.

16.3.1 The Two-Phase Commit Protocol

For atomicity to be ensured, all the sites in which a transaction T has executed
must agree on the final outcome of the execution. T must either commit at
all sites, or it must abort at all sites. To ensure this property, the transaction
coordinator of T must execute a commit protocol. Among the simplest and
most widely used commit protocols is the two-phase commit {2PC) protocol,
which we discuss next.

Let T be a transaction initiated at site 5, and let the transaction coordinator
at 5 be C;. When T completes its execution—that is, when all the sites at
which T has executed inform C; that T has completed —then C; starts the 2PC
protocol.

Phase 1. C; adds the record <prepare T to the log and forces the record
onto stable storage. It then sends a prepare (T) message to all the sites at
which T has executed. On receiving the message, the transaction manager
at that site determines whether it is willing to commit its portion of T. If
the answer is no, it adds a record <no T> to the log, and then it responds
by sending an abort (T) message to C,. It the answer is yes, it adds a record
<ready T> to the log and forces all the log records corresponding to T
onto stable storage. The transaction manager then replies with a ready (T)
message to C;.

Phase 2. When C; has received responses to the prepare (T) message from
all the sites, or when a pre-specified interval of time has elapsed since the
prepare (T) message was sent out, C; can determine whether the transaction
T can be committed or aborted. Transaction T can be committed if C; has
received a ready (T) message from all the participating sites. Otherwise,
transaction T must be aborted. Depending on the verdict, either a record
<commit T or a record <abort T> is added to the log and is forced onto
stable storage. At this point, the fate of the transaction has been sealed.
Following this, the coordinator sends either a commif (T) or an abert (T)
message to all participating sites. When a site receives that message, it
records the message in the log.

570

Chapter 16

A site at which T has executed can unconditionally abort T at any time priot
to its sending the message ready (T) to the coordinator. The ready {T) message
is, in effect, a promise by a site to follow the coordinator s order to commit T or
to abort T. A site can make such a promise only when the needed information
15 stored in stable storage. Otherwise, if the site crashes after sending ready T,
it may be unable to make good on its promise.

Since unanimity is required to commit a transaction, the fate of T is sealed
as soon as at least one site responds with abort (T). Note that the coordinator
site 5 can decide unilaterally to abort T, as it is one of the sites at which
T has executed. The final verdict regarding T is determined at the time the
coordinator writes that verdict (commit or abort) to the log and forces it to
stable storage. In some implementations of the 2PC protocol, a site sends an
acknowledge (T} message to the coordinator at the end of the second phase of
the protocol. When the coordinator has received the acknowledge (T) message
from all the sites, it adds the record <complete T to the log.

16.3.2 Failure Handling in 2PC

We now examine in detail how 2PC responds to various types of failures. As
we shall see, one major disadvantage of the 2PC protocol is that coordinator
failure may result in blocking, and a decision either to commit or to abort T
may have to be postponed until C; recovers. i}

16.3.21 Failure of a Participating Site

When a participating site §; recovers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
when the failure occurred. Let T be one such transaction, How will 5. deal with
T? We consider each of the possible alternatives:

The log contains a <commit T> record. In this case, the site executes
redo(T).

The log contains an <abort T> record. In this case, the site executes
undo(T).

The log contains a <ready T> record. In this case, the site must consult
C; to determine the fate of T. If C; is up, it notifies 5 regarding whether T
committed or aborted. In the former case, it executes redo(T); in the latter
case, it executes undo(T). If C; is down, S, must try to find out the fate of
T from other sites. It does so by sending a query-status {T) message to all
the sites in the system. On receiving such a message, a site must consuit
its log to determine whether T has executed there and, if so, whether T
committed or aborted. It then notifies 5, about this outcome. If no site has
the appropriate information (that is, whether T committed or aborted), then
Sk can neither abort nor commit T. The decision concerning T is postponed
until 5 can obtain the needed information. Thus, S must periodically
resend the query-status (T) message to the other sites. It does so until a site
recovers that contains the needed information. The site at which C; resides
always has the needed information.

16.3 Co s 571

The log contains no control records (abort, commit, ready) concerning T.
The absence of control records implies that S failed before responding to
the prepare (T) message from C;. Since the failure of S, means that it could
not have sent such a response, by our algorithm, C; must have aborted T,
Hence, 5; must execute undo(T).

16.3.2.2 Failure of the Coordinator

If the coordinator fails in the midst of the execution of the commit protocol
for transaction T, then the participating sites must decide on the fate of T We
shall see that, in certain cases, the participating sites cannot decide whether to
commit or abort 7, and therefore these sites must wait for the recovery of the
failed coordinator.

If an active site contains a <commit T> record in its log, then T must be
committed.

If an active site contains an <abort T> record in its log, then T must be
aborted.

If some active site does not contain a <ready T record in its log, then the
failed coordinator C; cannot have decided to commit T, We can draw this
conclusion because a site that does not have a <ready T> record in its log
cannot have sent a ready (T) message to C;. However, the coordinator may
have decided to abort T. Rather than wait for C; to recover, it is preferable
to abort T in this case.

If none of the preceding cases holds, then all the active sites must have a
<ready T record in their logs, but no additional control records (such
as <abort T> or <commit T>). Since the coordinator has failed, it is
impossible to determine whether a decision has been made—or, if S0,
what that decision is-—until the coordinator recovers. Thus, the active
sites must wait for C; to recover. As long as the fate of T remains in doubt,
T may continue to hold system resources. For example, if locking is used,
T may hold locks on data at active sites. Such a situation is undesirable
because hours or Cays may pass before C; is again active. During this
timne. other transactions may be forced to wait for T. As a result, data are
unavailable not only on the failed site (C;) but on active sites as well. The
amount of unavailable data increases as the downtime of C; grows. This
situation is called the blocking problem, because T is blocked pending the
recovery of site C,.

16.3.2.3 Failure of the Network

When a link fails, the messages in the process of being routed tnrough the
link do not arrive at their destinations intact. From the viewpoint of the sites
connected throughout that link, the other sites appear to have failed. Thus, our
previous schemes apply here as well.

When a number of links fail, the network may partition. In this case,
two possibilities exist. The coordinator and all its participants may remain in
one partition; in this case, the failure has no effect on the commit protocol.
Alternatively, the coordinator and its participants may belong to several

572

16.4

Chapter 16

partitions; in this case, messages between the participant and the coordinator
are lost, reducing the case to a link failure.

We move next to the issue of concurrency control. In this section, we show
how certain of the concurrency-control schemes discussed in Chapter 6 can be
modified for use in a distributed environment.

The transaction manager of a distributed database system manages the
execution of those transactions (or subtransactions) that access data stored
in a local site. Each such transaction may be either a local transaction
{that is, a transaction that executes only at that site) or part of a global
transaction (that is, a transaction that executes at several sites). Each transaction
manager is responsible for maintaining a log for recovery purposes and for
participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site. As we shall
see, the concurrency schemes described in Chapter 6 need to be modified to
accommodate the distribution of transactions.

16.4.1 Locking Protocols

The two-phase locking protocols described in Chapter 6 can be used in a
distributed environment. The only change needed is in the way the lock
manager is implemented. Here, we present several possible schemes. The first
deals with the case where no data replication is allowed. The others apply
to the more general case where data can be replicated in several sites. As in
Chapter 6, we assume the existence of the shared and exclusive lock modes.

16.4.1.1 Nonreplicated Scheme

If no data are replicated in the system, then the locking schemes described in
Section 6.9 can be applied as follows: Each site maintains a local lock manager
whose function is to administer the lock and unlock requests for those data
itemns stored in that site. When a transaction wishes to lock data item Q at site
5i, it simply sends a message to the lock manager at site 5; requesting a lock
(in a particular lock mode). If data item Q is locked in an incompatible mode,
then the request is delayed until that request car be granted. Once it has been
determined that the lock request can be granted. the lock manager sends a
message back to the initiator indicating that the lock request has been granted.

This scheme has the advantage of simple implementation. It requires two
message transfers for handling lock requests and one message transfer for
handling unlock requests. However, deadlock handling is more complex. Since
the lock and unlock requests are ro longer made at a single site, the various
deadlock-handling algorithms discussed in Chapter 7 must be modified; these
maodifications are discussed in Section 16.5.

16.4.1.2 Single-Coordinator Approach

Several concurrency-control schemes can be used in systems that allow data
replication. Urder the single-coordinator approach, the system maintains a

16.4 ’ : 573

single lock manager that resides in a single chosen site—say, §;. All lock and
unlock requests are made at site 5, When a transaction needs to lock a data
itern, it sends a lock request to 5;. The lock manager determines whether the
lock can be granted immediately. If so, it sends a message to that effect to the
site at which the lock request was initiated. Otherwise, the request is delayed
until it can be granted; and at that time, a message is sent to the site at which
the lock request was initiated. The transaction can read the data item from any
one of the sites at which a replica of the data item resides. In the case of a
write operation, all the sites where a replica of the data item resides must be
involved in the writing.
The scheme has the following advantages:

Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling unlock requests.

Simple deadlock handling. Since all lock and unlock requests are made
at one site, the deadlock-handling algorithms discussed in Chapter 7 can
be applied directly to this environment.

The disadvantages of the scheme include the following:

- Bottleneck. The site $; becomes a bottleneck, since all requests must be
processed there.

Vulnerability. If the site 5 fails, the concurrency controller is lost. Either
processing must stop or a recovery scheme must be used.

A compromise between these advantages and disadvantages can be
achieved through a multiple-coordinator approach, in which the lock-
manager function is distributed over several sites. Each lock-manager admin-
isters the lock and unlock requests for a subset of the data items, and the lock
managers reside in different sites. This distribution reduces the degree to which
the coordinator is a bottleneck, but it complicates deadlock handling, since the
lock and unlock requests are not made at a single site.

16.4.1.3 Majority Protocol

The majority protocol is a modification of the nonreplicated data scheme
presented earlier. The system maintains a lock manager at each site. Each
manager controls the locks for all the data or replicas of data stored at that site.
When a transaction wishes to lock a data item Q that is replicated in n different
sites, it must send a lock request to more than one-half of the # sites in which
(2 is stored. Each lock manager determines whether the lock can be granted
immediately (as far as it is concerned). As before, the response is delayed until
the request can be granted. The transaction does not operate on Q until it has
successfully obtained a lock on a majority of the replicas of ch18/18.

This scheme deals with replicated data in a decentralized manner, thus
avoiding the drawbacks of central control. However, it suffers from its own
disadvantages:

574

Chapter 16 _»:o.i o7 vl PRSI

+ Implementation. The majority protocol is more complicated to implement
than the previous schemes. It requires 2(n/2 + 1) messages for handling
lock requests and (1/2 + 1) messages for handling uniock requests.

 Deadlock handling. Since the lock and unlock requests are not made
at one site, the deadlock-handling algorithms must be modified (Section
16.5). In addition, a deadlock can occur even if only one data item is being
locked. To illustrate, consider a system with four sites and full replication.
Suppose that transactions T; and T wish to lock data item Q in exclusive
mode. Transaction T; may succeed in locking Q at sites S and 53, while
transaction T, may succeed in locking Q at sites 5, and S4. Each then must
wait to acquire the third lock, and hence a deadlock has occurred.

16.4.1.4 Biased Protocol

The biased protocol is similar to the majority protocol. The difference is that
requests for shared locks are given more favorable treatment than are requests
for exclusive locks. The system maintains a lock manager at each site. Each
manager manages the locks for all the data items stored at that site. Shared and
exclusive locks are handled differently.

s Shared locks. When a transaction needs to lock data item Q, it simply
fequests a lock on Q from the lock manager at one site containing a replica
of ch18/18.

. Exclusive locks. When a transaction needs to lock dafa item (J, it requests
a lock on Q from the lock manager at each site containing a replica of
ch18/18.

As before, the response to the request is delayed until the request can be
granted.

The scheme has the advantage of imposing less overhead on read opera-
tions than does the majority protocol. This advantage is especially significant
in common cases in which the frequency of reads is much greater than the
frequency of writes. However, the additional overhead on writes is a dis-
advantage. Furthermore, the biased protocol shares the majority protocol’s
disadvantage of complexity in handling deadlock.

16.4.1.5 Primary Copy

Yet another alternative is to choose one of the replicas as the primary copy.
Thus, for each data item (, the primary copy of Q must reside in precisely one
site, which we call the primary site of Q. When a transaction needs to lock a data
item Q, it requests a lock at the primary site of ch18/18. As before, the response
to the request is delayed until the request can be granted.

This scheme enables us to handle concurrency control for replicated data
in much the same way as for unreplicated data. Implementation of the method
is simple. However, if the primary site of (fails, (is inaccessible even though
other sites containing a replica may be accessible.

16.4 L e 575

16.4.2 Timestamping

The principal idea behind the timestamping scheme discussed in Section 6.9 is
that each transaction is given a unique timestamp, which is used to decide the
serialization order. Our first task, then, in generalizing the centralized scheme to
a distributed scheme is to develop a method for generating unique timestamps.
Our previous protocols can then be applied directly to the nonreplicated
environment.

16.4.2.1 Generation of Unique Timestamps

Two primary methods are used to generate unique timestamps; one is central-
ized, and one is distributed. In the centralized scheme, a single site is chosen
for distributing the timestamps. The site can use a logical counter or its own
local clock for this purpose.

In the distributed scheme, each site generates a local unique timestamp
using either a logical counter or the local clock. The global unique timestamp is
obtained by concatenation of the local unique timestamp with the site identifier,
which must be unique (Figure 16.2). The order of concatenation is important!
We use the site identifier in the least significant position to ensure that the global
timestamps generated in one site are not always greater than those generated
in another site. Compare this technique for generating unigue timestamps with
the one we presented in Section 16.1.2 for generating unique names.

We may still have a problem if one site generates local timestamps at a
faster rate than do other sites. In such a case, the fast site’s logical counter will
be larger than those of other sites. Therefore, all timestamps generated by the
fast site will be larger than those generated by other sites. A mechanism is
needed to ensure that local timestamps are generated fairly across the system.
To accomplish the fair generation of timestamps, we define within eachsite §; a
logical clock (LC;), which generates the local timestamp (see Section 16.1.2). To
ensure that the various logical clocks are synchronized, we require that a site
5 advance its logical clock whenever a transaction T, with timestamp <x,y>
visits that site and x is greater than the current value of LC;. In this case, site 5;
advances its logical clock to the value x + 1.

If the system clock is used to generate timestamps, then timestamps are
assigned fairly, provided that no site has a system clock that runs fast or slow.
Since clocks may not be perfectly accurate, a technique similar to that used for
logical clocks must be used to ensure that no clock gets far ahead or far behind
another clock.

local unique timestamp site identifier
Pratiin. .l Q

global unique identifier

Figure 16.2 Generation of unique timestamps.

576

16.5

Chapter 16

16.4.2.2 Timestamp-Ordering Scheme

The basic timestamp scheme introduced in Section 6.9 can be extended in
a straightforward manner to a distributed system. As in the centralized case,
cascading rollbacks may result if no mechanism is used to prevent a transaction
from reading a data item value that is not yet committed. To eliminate cascading
rollbacks, we can combine the basic timestamp scheme of Section 6.9 with the
2PC protocol of Section 16.3 to obtain a protocol that ensures serializability
with no cascading rollbacks. We leave the development of such an algorithm
to you.

The basic timestamp scheme just described suffers from the undesirable
property that conflicts between transactions are resolved through rollbacks,
rather than through waits. To alleviate this problem, we can buffer the various
read and write operations (that is, delay them) until a time when we are
assured that these operations can take place without causing aborts. A read(y)
operationby T; must be delayed if there exists a transaction T; that will perform
a write(x) operation but has not vet done so and TS(T}) < TS(T;). Similarly, a
write(x) operation by T; mustbe delayed if there exists a transaction T; that will
perform either a read(x) or a write(x) operation and TS(T}) < TS(T;). Various
methods are available for ensuring this property. One such method, called
the conservative timestamp-ordering scheme, requires each site to maintain
a read queue and a write queue consisting of all the read and write requests
that are to be executed at the site and that must be delayed to preserve the
above property. We shall not present the scheme here. Again, we leave the
development of the algorithm to vou.

The deadlock-prevention, deadlock-avoidance, and deadlock-detection algo-
rithms presented in Chapter 7 can be extended so that they can be used in
a distributed system, In this section, we describe several of these distributed
algorithms.

16.5.1 Deadlock Prevention and Avoidance

The deadlock-prevention and deadlock-avoidance algorithms presented in
Chapter 7 can be used in a distributed system, provided that appropriate
modifications are made. For example, we can use the resource-ordering
deadlock-prevention technique by simply defining a global ordering among
the svstem resources. That is, all resources in the entire system are assigned
unique numbers, and a process may request a resource (at any processor) with
unique number i only if it is not holding a resource with a unique number
greater than /. Similarly, we can use the banker’s algorithm in a distributed
svstem by designating one of the processes in the system (the banker) as the
process that maintains the information necessary to carry out the banker’s
algorithm. Every resource request must be channelled through the banker.
The global resource-ordering deadlock-prevention scherne is simple tc
implement in a distributed environment and requires little overhead. The
banker's algorithm can also be implemented easily, but it may require toc
much overhead. The banker may become a bottleneck, since the number o

16.5 577

messages to and from the banker may be iarge. Thus, the banker’s scheme
does not seem to be of practical use in a distributed system.

We turn next to a new deadlock-prevention scheme based on a timestamp-
ordering approach with resource preemption. Although this approach can
handle any deadlock situation that may arise in a distributed system, for
simplicity we consider only the case of a single instance of each resource type.

To control the preemption, we assign a unique priority number to each
process. These numbers are used to decide whether a process P; should wait
fora process P;. For example, we can let P; wait for P; if P, has a priority higher
than that of P;; otherwise, P; is rolled back. This scheme prevents deadlocks
because, for every edge P - P; in the wait-for graph, P; has a higher priority
than P;. Thus, a cycle cannot exist.

One difficulty with this scheme is the possibility of starvation. Some
processes with extremely low priorities may always be rolled back. This
difficulty can be avoided through the use of timestamps. Each process in the
system is assigned a unique timestamp when it is created. Two complementary
deadlock-prevention schemes using timestamps have been proposed:

The wait-die scheme. This approach is based on a nonpreemptive
technique. When process P, requests a resource currently held by P,, P, is
allowed to wait only if it has a smaller timestamp than does P (that s, P;
is older than P;). Otherwise, P, is tolled back (dies). For example, suppose
that processes P, P>, and Py have timestamps 5, 10, and 15, respectively.
If P requests a resource held by P;, Py will wait. If P; requests a resource
held by P, P; will be rolled back.

The wound-wait scheme. This approach is based on a preemptive
technique and is a counterpart to the wait-die approach. When process
P; requests a resource currently held by P;, P is allowed to wait only
if it has a larger timestamp than does P; (that is, P, is younger than
P;). Otherwise, P; is rolled back (P; is wounded by P;). Returning to our
previous example, with processes Pj, P», and Ps, if Py requests a resource
held by P, then the resource will be preempted from I, and Pa will be
rolled back. If Py requests a resource held by Py, then P; will wait.

Both schemes can avoid starvation provided that, when a process is rolled
back, it is not assigned a new timestamp. Since timestamps always increase, a
process that is rolled back will eventually have the smallest fimestamp. Thus,
it will not be rolled back again. There are, however, significant differences in
the way the two schemes operate.

In the wait-die scheme, an older process must wait for a younger one to
release its resource. Thus, the older the process gets, the more it tends to
wait. By contrast, in the wound-wait scheme, an older process never waits
for a younger process.

In the wait-die scheme, if a process P; dies and is rolled back because it
has requested a resource held by process Pj, then P may reissue the same
sequence of requests when it is restarted. If the resource is still held by £,
then P; will die again. Thus, P, may die several times before acquiring the
needed resource. Contrast this series of events with what happens in the

578

Chapter 16

wound -wait scheme. Process P, is wounded and rolled back because P;
has requested a resource it holds. When P; is restarted and requests the
resource now being held by P;, P; waits. Thus, fewer rollbacks occur in
the wound ~wait scheme.

The major problem with both schemes is that unnecessary rollbacks may occur.

16.5.2 Deadlock Detection

The deadlock-prevention algorithm may preempt resources even if no dead-
lock has occurred. To prevent unnecessary preemptiions, we can use a deadlock-
detection algorithm. We construct a wait-for graph describing the resource-
allocation state. Since we are assuming only a single resource of each type, a
cycle in the wait-for graph represents a deadlock.

The main problem in a distributed system is deciding how to maintain
the wait-for graph. We illustrate this problem by describing several common
techniques to deal with this issue. These schemnes require each site to keep a
local wait-for graph. The nodes of the graph correspond to all the processes
(local as well as nonlocal) currently holding or requesting any of the resources
local to that site. For example, in Figure 16.3 we have a system consisting of two
sites, each maintaining its local wait-for graph. Note that processes P; and P;
appear in both graphs, indicating that the processes have requested resources
at both sites.

These local wait-for graphs are constructed in the usual manner for local
processes and resources. When a process P; in site 5 needs a resource held by
process P; in site S;, a request message is sent by P; to site 5. The edge P; —
P; is then inserted in the local wait-for graph of site 5.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. The
fact that we find no cycles in any of the local wait-for graphs does not mean
that there are no deadlocks, however. To illustrate this problem, we consider
the system depicted in Figure 16.3. Each wait-for graph is acyclic; nevertheless,
a deadtock exists in the system. To prove that a deadlock has not occurred, we
must show that the union of all local graphs is acyclic. The graph (Figure 16.4)
that we obtain by taking the union of the two wait-for graphs of Figure 16.3
does indeed contain a cycle, implying that the system is in a deadlocked state.

A number of methods are available to organize the wait-for graph in a
distributed system. We describe several common schemes here.

sitas;

Figure 16.3 Two local wait-for graphs.

16.5 - o fognediing 579

Figure 16.4 Global wait-for graph for Figure 16.3.

16.5.2.1 Centralized Approach

In the centralized approach, a global wait-for graph is constructed as the
union of all the local wait-for graphs. It is maintained in a single process:
the deadlock-detection coordinator. Since there is communication delay in
the system, we must distinguish between two types of wait-for graphs. The
real graph describes the real but unknown state of the system at any instance
in time, as would be seen by an omniscient observer. The constructed graph
is an approximation generated by the coordinator during the execution of its
algorithm. The constructed graph must be generated so that, whenever the
detection algorithm is invoked, the reported results are correct. By correct we
mean the following:

* If a deadlock exists, then it is reported properly.
» If a deadlock is reported, then the system is indeed in a deadlocked state.

As we shall show, it is not easy to construct such correct algorithms.
The wait-for graph may be constructed at three different points in time:

1. Whenever a new edge is inserted in or removed from one of the local
wait-for graphs

T

Periodically, when a number of changes have occurred in a wait-for graph

1. Whenever the deadlock-detection coordinator needs to invoke the cycle-
detection algorithm

When the deadlock-detection algorithm is invoked, the coordinator searches
its global graph. If a cycle is found, a victim is selected to be rolled back. The
coordinator must notify all the sites that a particular process has been selected
as victim. The sites, in turn, roll back the victim process.

Let us consider option 1. Whenever an edge is either inserted in or removed
from a local graph, the local site must also send a message t6 the coordinator
to notify it of this modification. On receiving such a message, the coordinator
updates its global graph.

Alternatively (option 2), a site can send a number of such changes in a single
message periodically. Returning to our previous example, the coordinator
process will maintain the global wait-for graph as depicted in Figure 16.4.
When site S; inserts the edge P; — P; in its local wait-for graph, it also sends
a message to the coordinator, Similarly, when site $; deletes the edge P5 — P,

580

Chapter 16

site 5, site 5, coordinator

Figure 16.5 Local and global wait-for graphs.

because I has released a resource that was requested by Ps, an appropriate
message is sent to the coordinator.

Note that no matter which option is used, unnecessary rollbacks may occur,

as a result of two situations:

False cycles may exist in the global wait-for graph. To illustrate this point,
we consider a snapshot of the system as depicted in Figure 16.5. Suppose
that P; releases the resource it is holding in site 5y, resulting in the deletion
of the edge P; — P in site 5. Process P, then requests a resource held
by Pi at site 5, resulting in the addition of the edge P> -+ F; in site S,. If
the insert P» — P; message from site 5, arrives before the delete P} — P
message from site 5, the coordinator may discover the false cycle P, —
Py — Py — Py after the insert {but before the delete). Deadlock recovery
may be initiated, although no deadlock has occurred.

Unnecessary rollbacks may also result when a deadlock has indeed
occurred and a victim has been picked, but at the same time one of the
processes has been aborted for reasons unrelated to the deadlock (as
when a process has exceeded its allocated time). For example, suppose
that site S; in Figure 16.3 decides to abort P;. At the same time, the
coordinator has discovered a cycle and picked P as a victim. Both P; and
D5 are now rolled back, although only P, needed to be rolled back.

Let us now consider a centralized deadlock-detection algorithm using

option 3 that detects all deadlocks that actually occur and does not detect
false deadlocks. To avoid the report of false deadlocks, we require that requests
from different sites be appended with unique identifiers (or timestamps). When
process P, at site 5), requests a resource from P, at site S, a request message
with timestamp TS is sent. The edge P; — P; with the label TS is inserted in the
local wait-for graph of 5;. This edge is inserted in the local wait-for graph of
site 5 only if site S; has received the request message and cannot immediately
grant the requested resource. A request from P; to P; in the same site is handled
in the usual manner; no timestamps are associated with the edge P, - P,.

The detection algorithmn is as follows:

The controller sends an initiating message to each site in the system.

On receiving this message, a site sends its local wait-for graph to
the coordinator. Each of these wait-for graphs contains all the local

16.5 . B S SRR 581

information the site has about the state of the real graph. The graph
reflects an instantaneous state of the site, but it is not synchronized with
respect to any other site.

When the controller has received a reply from each site, it constructs a
graph as follows:

a. The constructed graph contains a vertex for every process in the
system.

b. The graph has an edge P; — P; if and only if there is an edge F; —
P, in one of the wait-for graphs or an edge P; — P; with some label
TS in more than one wait-for graph.

If the constructed graph contains a cycle, then the system is in a deadlocked
state. If the constructed graph does not contain a cycle, then the system was
not in a deadlocked staie when the detection algorithm was invoked as result
of the initiating messages sent by the coordinator (in step 1).

16.5.2.2 Fully Distributed Approach

In the fully distributed deadlock-detection algorithm, all controllers share
equally the responsibility for detecting deadlock. Every site constructs a wait-
for graph that represents a part of the total graph, depending on the dynamic
behavior of the system. The idea is that, if a deadlock exists, a cycle will appear
in at least one of the partial graphs. We present one such algorithm, which
involves construction of partial graphs in every site.

Fach site maintains its own local wait-for graph. A local wait-for graph in
this scheme differs from the one described earlier in that we add one additional
node P,, to the graph, Anarc P; — P,, exists in the graph if P; is waiting for a
data item in another site being held by any process. Similarly, an arc Py — P;
exists in the graph if a process at another site is waiting to acquire a resource
currently being held by P; in this local site.

To illustrate this situation, we consider again the two local wait-for graphs
of Figure 16.3. The addition of the node P, in both graphs results in the local
wait-for graphs shown in Figure 16.6.

If a local wait-for graph contains a cycle that does not involve node
P,,, then the system is in a deadlocked state. If, however, a local graph
contains a cycle involving P, then this implies the possibility of a deadlock.

site S, site 8,

Figure 16.6 Augmented local wait-for graphs of Figure 16.3.

582

Chapter 16 ST U P

To ascertain whether a deadlock does exist, we must invoke a distributed
deadlock-detection algorithm.

Suppose that, at site 5, the local wait-for graph contains a cycle involving
node P,,. This cycle must be of the form

Foo = Py = P, —» ... = P, = P,

which indicates that process P, in site S; is waiting to acquire a data item
located in some other site—say, ;. On discovering this cycle, site S; sends to
site 5; a deadlock-detection message containing information about that cycle.

When site 5; receives this deadlock-detection message, it updates its
local wait-for graph with the new information. Then it searches the newly
constructed wait-for graph for a cycle not involving P,,. If one exists, a
deadlock is found, and an appropriate recovery scheme is invoked. If a cycle
involving P.. is discovered, then 5; transmits a deadlock-detection message
to the appropriate site—say, 5. Site §, in return, repeats the procedure.
Thus, after a finite number of rounds, either a deadiock is discovered or the
deadlock-detection computation halts.

To illustrate this procedure, we consider the local wait-for graphs of Figure
16.6. Suppose that site 5; discovers the cycle

Py - P, - Py » P,

Since P; is waiting to acquire a data item in site $;, a deadlock-detection
message describing that cycle is transmitted from site §; to site S;. Whensite S,
receives this message, it updates its local wait-for graph, obtaining the wait-for
graph of Figure 16.7. This graph contains the cycle

Py, - Py > Py - P,

which does not include node P,,. Therefore, the system is in a deadlocked state,
and an appropriate recovery scheme must be invoked.

Note that the outcome would be the same if site S, discovered the cycle first
in its local wait-for graph and sent the deadlock-detection message to site ;.
In the waorst case, both sites will discover the cycle at about the same time, and
two deadlock-detection messages will be sent: one by S to S, and another by
5 to Sy. This situation results in unnecessary message transfer and overhead in
updating the two local wait-for graphs and searching for cycles in both graphs.

site 5,

Figure 16.7 Augmented local wait-for graph in site S of Figure 16.6.

16.6

16.6 . e T AT 583

To reduce message traffic, we assign to each process P; a unique identifier,
which we denote ID(F;). When site S discovers that its local wait-for graph
contains a cycle involving node P, of the form

Py = Py, - Px, - ... = Px, = P..
it sends a deadlock-detection message to another site only if
ID(Pg,) < ID(Py,).

Otherwise, site 5 continues its normal execution, leaving the burden of
initiating the deadlock-detection algorithm to some other site.

Toillustrate this scheme, we consider again the wait-for graphs maintained
at sites 5; and & of Figure 16.6. Suppose that

ID(P)) < ID(P) < ID(Ps) < ID(Py).

Let both sites discover these local cycles at about the same time. The cycle in
site §; is of the form

Py —+ P, = P3 = P,

Since ID(P3) > ID(P,), site $; does not send a deadlock-detection message to
site 5;.

The cycle in site S is of the form
P“« — P3 — P4 - Pz — ng.

Since ID(P) < ID(Ps), site 5 does send a deadlock-detection message to
site 5, which, on receiving the message, updates its local wait-for graph. Site
5; then searches for a cycle in the graph and discovers that the system is in a
deadlocked state.

FElgertic o Doty

As we pointed out in Section 16.3, many distributed algorithms employ a
coordinator process that performs functions needed by the other processes in
the system. These functions include enforcing mutual exclusion, maintaining
a global wait-for graph for deadlock detection, replacing a lost token, and
controlling an input or output device in the system. If the coordinator process
fails due to the failure of the site at which it resides, the system can continue
execution only by restarting a new copy of the coordinator on some other site.
The algorithms that determine where a new copy of the coordinator should be
restarted are called election algerithms.

Election algorithms assume that a unique priority number is associated
with each active process in the system. For ease of notation, we assume that
the priority number of process P; is i. To simplify our discussion, we assume
a one-to-one correspondence between processes and sites and thus refer to
both as processes. The coordinator is always the process with the largest

584

Chapter 16

priority number. Hence, when a coordinator fails, the algorithm must elect
that active process with the largest priority number. This number must be sent
to each active process in the system. In addition, the algorithm must provide a
mechanism for a recovered process to identify the current coordinator.

In this section, we present examples of election algorithms for two different
configurations of distributed systems. The first algorithm applies to systems
where every process can send a message to every other process in the system.

ne second algorithm applies to systems organized as a ring (logically or
physically). Both algorithms require n? messages for an election, where # is the
number of processes in the systemn. We assume that a process that has failed
knows on recovery that it has indeed failed and thus takes appropriate actions
to rejoin the set of active processes.

16.6.1 The Bully Algorithm

Suppose that process P; sends a request that js not answered by the coordinator
within a time interval 7. In this situation, it is assumed that the coordinator has
failed, and P, tries tc elect itself as the new coordinator. This task is completed
through the following algorithm.

Process F; sends an election message to every process with a higher priority
number. Process P; then waits for a time interval T for an answer from any one
of these processes.

If no response is received within time T, P; assumes that all processes with
numbers greater than i have failed and elects itself the new coordinator. Process
P; restarts a new copy of the coordinator and sends a message to inform all
active processes with priority numbers less than i that P; is the new coordinator.

However, if an answer is received, P; begins a time interval 7", waiting to
receive a message informing it that a process with a higher priority number
has been elected. (That is, some other process is electing itself coordinator and
should report the results within time 7".) If no message is sent within T”, then
the process with a higher number is assumed to have failed, and process I
should restart the algorithm.

If P is not the coordinator, then, at any time during execution, I, may
receive one of the following two messages from process P Ik

P; is the new coordinator {j >). Process P;, in turn, records this
information.

P; has started an election (j <). Process P, sends a response to P;
and begins its own election algorithm, provided that P, has not already
initiated such an election.

The process that completes its algorithm has the highest number and is elected
as the coordinator. It has sent its number to all active processes with smaller
numbers. After a failed process recovers, it immediately begins execution of
the same algorithm. If there are no active processes with higher numbers, the
recovered process forces all processes with lower numbers to let it become the
coordinator process, even if there is a currently active coordinator with a lower
number. For this reason, the algorithm is termed the bully algorithm.

16.6 = SRS 585

We can demonstrate the operation of the algorithm with a simple example
of a system consisting of processes Py through Py. The operations are as follows:

All processes are active; P; is the coordinator process.

P, and P, fail. P, determines that P; has failed by sending a request that
is not answered within time T. P; then begins its clection algorithm by
sending a request to Ps.

P receives the request, responds to P2, and begins its own algorithm by
sending an election request to Ps.

P, receives Ps’s tesponse and begins waiting for an interval T'.

P; does not respond within an interval T, so Py elects itself the new
coordinator and sends the number 3 to P; and Py. (P, does not receive
the number, since it has failed.)

Later, when Pj recovers, it sends an election request to P, P, and Pj.

P, and P respond to P; and begin their own election algorithms, P will
again be elected, through the same events as before.

Finally, Py recovers and notifies P, P, and P, that it is the current
coordinator. (P; sends no election requests, since it i3 the process with
the highest number in the system.)

16.6.2 The Ring Algorithm

The ring algorithm assumes that the links are unidirectional and that each
process sends its messages to the neighbor on the right. The main data structure
used by the algorithm is the active list, a list that contains the priority numbers
of all active processes in the system when the algorithm ends; each process
maintains its own active list. The algorithm works as follows:

If process P; detects a coordinator failure, it creates a new active list that
is initially empty. It then sends a message elect(/) to its right neighbor and
adds the number i to its active list.

1f P; receives a message elect(j) from the process on the left, it must respond
in one of three ways:

a. If this is the first elect message it has seen or sent, Ij creates a new
active list with the numbers i and j. It then sends the message elect(d),
followed by the message elect(j).

b. 1fi# j—that is, the message received does not contain P;’s number
~—then P; adds j to its active list and forwards the message to its
right neighbor.

¢. Ifi=j—thatis, P receives the message elect(i)-—then the active list
for P; now contains the numbers of all the active processes in the
system. Process P; can now determine the largest number in the
active list to identify the new coordinator process.

586

16.7

Chapter 16 Tl e e W

This algorithm does not specify how a recovering process determines the
number of the current coordinator process. One solution requires a recovering
process to send an inquiry message. This message is forwarded around the ring
to the current coordinator, which in turn sends a reply containing its number.

For a system to be reliable, we need a mechanism that allows a set of processes
to agree on a common value. Such an agreement may not take place, for several
reasons. First, the communication medium may be faulty, resulting in lost or
garbled messages. Second, the processes themselves may be faulty, resulting
in unpredictable process behavior. The best we can hope for in this case is that
processes fail in a clean way, stopping their execution without deviating from
their normal execution pattern. In the worst case, processes may send garbled
or incorrect messages to other processes or even collaborate with other tailed
processes in an attempt to destroy the integrity of the system.

The Byzantine generals problem provides an analogy for this situation.
Several divisions of the Byzantine army, each commanded by its own general,
surround an enemy camp. The Byzantine generals must reach agreement on
whether or not to attack the enemy at dawn. It is crucial that all generals agree,
since an attack by only some of the divisions would result in defeat. The various
divisions are geographically dispersed, and the generals can communicate with
one another only via messengers who run from camp to camp. The generals
may not be able to reach agreement for at least two major reasons:

Messengers may get caught by the enemy and thus may be unable to
deliver their messages. This situation corresponds to unreliable com-
munication in a computer system and is discussed further in Section
16.7.1.

Generals may be traitors, trying to prevent the loyal generals from
reaching an agreement. This situation corresponds to faulty processes
in a computer system and is discussed further in Section 16.7.2.

16.7.1 Unreliable Cormmunications

Let us first assume that, if processes fail, they do so in a clean way and that
the communication medium is unreliable. Suppose that process P. at site 51,
which has sent a message to process P; at site 5;, needs to know whether
P; has received the message so that it can decide how to proceed with its
computation. For example, P, may decide to compute a function foo if P; has
received its message or to compute a function boo if P; has not received the
message (because of some hardware failure).

To detect failures, we can use a time-out scheme similar to the one
described in Section 14.7.1. When P sends out a message, it also specifies
a time interval during which it is willing to wait for an acknowledgment
message from P;. When P; receives the message, it immediately sends an
acknowledgment to P, If P, receives the acknowledgment message within the

16.7 oo PRI S P A L O 587

specified time interval, it can safely conclude that P; has received its message.
If, however, a time-out occurs, then P needs to retransmit its message and
wait for an acknowledgment. This procedure continues until P; either gets the
acknowledgment message back or is notified by the system that site S; is down.
In the first case, it will compute 5; in the latter case, it will compute F. Note
that, if these are the only two viable alternatives, P, must wait until it has been
notified that one of the situations has occurred.

Suppose now that P; also needs to know that P; has received its acknowl-
edgment message, so that it can decide how to proceed with its computation.
For example, P; may want to compute foo only if it is assured that P; got
its acknowledgment. In other words, P, and P; will compute foo if and only
if both have agreed on it. It turns out that, in the presence of failure, it is
not possible to accomplish this task. More precisely, it is not possible in a
distributed environment for processes F; and P; to agree completely on their
respective states.

To prove this claim, let us suppose that a minimal sequence of message
transfers exists such that, after the messages have been delivered, both
processes agree to compute foo. Let s’ be the last message sent by P to
P;. Since P; does not know whether its message will arrive at P; (since the
message may be lost due to a failure), P; will execute foo regardless of the
outcome of the message delivery. Thus, m’ could be removed from the sequence
without affecting the decisiorrprocedure. Hence, the original sequence was not
minimal, contradicting our assumption and showing that there is no sequence.
The processes can never be sure that both will compute foo.

16.7.2 Faulty Processes

Now let us assume that the communication medium is reliable but that
processes can fail in unpredictable ways. Consider a system of n processes,
of which no more than m are faulty. Suppose that each process P, has some
private value of V;. We wish to devise an algorithm that allows each nonfaulty
process P; to construct a vector X; = (A1, A2, ..., Ai ») such that the following
conditions exist:

If P; is a nonfaulty process, then 4;; = V.
i 1f P; and P; are both nonfaulty processes, then X; = X|.

There are many solutions to this problem, and they share the following
properties:

i. A correct algorithm can be devised only if n > 3 x m + 1.

2. The worst-case delay for reaching agreement is proportionate to m + 1
message-passing delays.

-

The number of messages required for reaching agreement is large. No
single process is trustworthy, so all processes must collect all information
and make their own decisions.

588

16.8

Chapter 16

Rather than presenting a general solution, which would be coraplicated, we
present an algorithm for the simple case where m = 1 and 7 = 4. The algorithm
requires two rounds of information exchange:

Each process sends its private value to the other three processes.

Each process sends the information it has obtained in the first round to
all other processes.

A faulty process obviously may refuse to send messages. In this case, a
nonfaulty process can choose an arbitrary value and pretend that the value
was sent by the faulty process. :

Once these two rounds are completed, a nonfaulty process P; can construct
its vector X; = (A1, Aia, Aia, Ay as follows:

141".1' = Vx

For j # i, if at least two of the three values reported for process P; (in
the two rounds of exchange) agree, then the majority value is used to set
the value of A ;, Otherwise, a default value—say, nil—i5 used to set the
value of A; i

In a distributed system with no common memory and no common clock, it
is sometimes impossible to determine the exact order in which two events
occur. The Jappened-before relation is only a partial ordering of the events in
a distributed system. Timestamps can be used to provide a consistent event
ordering.

Mutual exclusion in a distributed environment can be implemented in a
variety of ways. In a centralized approach, one of the processes in the system
is chosen to coordinate the entry to the critical section. Int the fully distributed
approach, the decision making is distributed across the entire system. A
distributed algorithm, which is applicable to ring-structured networks, is the
token-passing approach.

For atomicity to be ensured, all the sites in which a transaction T has
executed must agree on the final outcome of the execution. T either commits at
all sites or aborts at all sites. To ensure this property, the transaction coordinator
of T must execute a commit protocol. The most widely used commit protocol
is the 2PC protocol.

The various concurrency-control schemes that can be used in a centralized
system can be modified for use in a distributed environment. In the case
of locking protocols, we need only change the way the lock manager is
implemented. In the case of timestamping and validation schemes, the only
change needed is the development of a mechanism for generating unique
global timestamps. The mechanism can either concatenate a local timestamp
with the site identification or advance local clocks whenever a message arrives
that has a larger timestamp.

The primary method for dealing with deadlocks in a distributed environ-
ment is deadlock detection. The main problem is deciding how to maintain the

589

wait-for graph. Methods for organizing the wait-for graph include a centralized
approach and a fully distributed approach.

Some distributed algorithins require the use of a coordinator. H the
coordinator fails because of the failure of the site at which it resides, the system
can continue execution only by restarting a new copy of the coordinator on
some other site. It can do so by maintaining a backup coordinator that is
ready to assume responsibility if the coordinator fails. Another approach is to
choose the new coordinator after the coordinator has failed. The algorithms
that determine where a new copy of the coordinator should be restarted are
called election algorithms. Two algorithms, the bully algorithm and the ring
algorithm, can be used to elect a new coordinator in case of failures.

16.1 Discuss the advantages and disadvantages of the two methods we
presented for generating globally unique timestamps.

16.2 The logical clock timestamp scheme presented in this chapter provides
the following guarantee: If event A happens before event B, then the
timestamp of A is less than the timestamp of B. Note, however, that
one cannot order two events based only on their timestamps. The fact
that an event C has a timestamp that is less than the timestamp of event
D does not necessarily mean that event C happened before event D; C
and D could be concurrent events in the system. Discuss ways in which
the logical clock timestamp scheme could be extended to distinguish

. concurrent events from events that can be ordered by the happens-before
relationship.

16.3 Why is deadlock detection much more expensive in a distributed
environment than in a centralized environment?

16.4 Your company is building a computer network, and you are asked to
develop a scheme for dealing w:th the deadlock problem.

a. Would you use a deadlock-detection scheme or a deadlock-
prevention scheme?

b. If you were to use a deadlock-prevention scheme, which one
would you use? Explain your choice.

¢. If you were to use a deadlock-detection scheme, which one
would you use? Explain your choice.

16.5 Consider the centralized and the fully distributed appreaches to
deadlock detection. Compare the two algorithms in terms of message
complexity. -

16.6 Consider the following hierarchical deadlock-detection algorithm, in
which the global wait-for graph is distributed over a number of
different controllers, which are organized in a tree. Each non-leaf
controller maintains a wait-for graph that contains relevant information
from the graphs of the controllers in the subtree below it. In particular,
let S4, S5, and Sc be controllers such that 5 s the lowest common

590

Chapter 16

ancestor of 54 and Sp (5 must be unique, since we are dealing with
a tree). Suppose that node T, appears in the local wait-for graph of
controllers 54 and Sg. Then T, must also appear in the local wait-for
graph of

* Controller -
* Every controller in the path from Sc to 5,4
* Every controller in the path from S¢ to Sg

In addition, if T; and T, appear in the wait-for graph of controller S,
and there exists a path from T; to T, in the wait-for graph of one of the
childrenof 55, then an edge T; — T; must be in the wait-for graph of
Si.

Show that, if a cycle exists in any of the wait-for graphs, then the
system is deadlocked.

16.7 Derivean election algorithm for bidirectional rings that is more efficient
than the one presented in this chapter. How many messages are needed
for 1 processes?

16.8 Consider a tailure that occurs during 2PC for a transaction. For each
possible failure, explain how 2PC ensures transaction atomnicity despite
the failure.

The distributed algorithm for extending the happened-before relation to a
consistent total ordering of all the events in the system was developed by
Lamport {1978b]. Further discussions of using logical time to characterize the
oehavior ot distributed systems can be found in Fidge [1991], Raynal and
singhal [1996], Babaoglu and Marzullo {1993], Schwarz and Mattern [1994],
and Mattern [1988].

The first general algorithm for implementing mutual exclusion in a
distributed environment was also developed by Lamport [1978b]. Lamport's
scheme requires 3 x (n — 1) messages per critical-section entry. Subsequently,
Ricartand Agrawala [1981] proposed a distributed algorithm that requires only
2 x (n — 1) messages. Their algorithm is presented in Section 16.2.2. A square-
root algorithm for distributed mutual exclusion was described by Maekawa
[1985]. The token-passing algorithm for ring-structured systems presented in
Section 16.2.3 was developed by Lann [1977]. Carvalho and Roucairol [1983]
discussed mutual exclusion in computer networks, and Agrawal and Abbadi
[1991] described an efficient and fault-tolerant solution of distributed mutual
exclusion. A simple taxonomy for distributed mutual-exclusion algorithms
was presented by Raynal [1991)].

The issue of distributed synchronization was discussed by Reed and
Kanodia {1979] (shared-memory environment), Lamport [1978b], Lamport
[1978a], and Schneider [1982] (totally disjoint processes). A distributed solution
to the dining-philosophers problem was presented by Chang [1980].

The 2PC protocol was developed by Lampson and Sturgis [1976] and Gray
[1978]. Mohan and Lindsay {1983] discussed two modified versions of 2PC,

591
called presume commit and presume abort, that reduce the overhead of 2PC
by defining default assumptions regarding the fate of transactions.

Papers dealing with the problems of implementing the transaction concept
in a distributed database were presented by Gray [1981], Traiger et al. [1982],
and Spector and Schwarz [1983]. Comprehensive discussions of distributed
concurrency control were offered by Bernstein et al. [1987]. Rosenkrantz et al.
[1978] reported the timestamp distributed deadlock-prevention algorithm. The
fully distributed deadlock-detection scheme presented in Section 16.5.2 was
developed by Obermarck [1982]. The hierarchical deadlock-detection scheme
of Exercise 16.3 appeared in Menasce and Muntz [1979]. Knapp [1987] and
Singhal [1989] offered surveys of deadlock detection in distributed systems.
Deadlocks can also be detected by taking global snapshots of a distributed
system, as discussed in Chandy and Lamport [1985].

The Byzantine generals problemn was discussed by Lamport et al. [1982]
and Pease et al. [1980]. The bully algorithm was presented by Garcia-Molina
[1982], and the election algorithm for a ring-structured system was written by
Lann [1977].

